Mesure de la chaleur latente de vaporisation de l'eau

par Gilles GALLIN-MARTEL Lycée Baudelaire - 74960 Cran-Gevrier

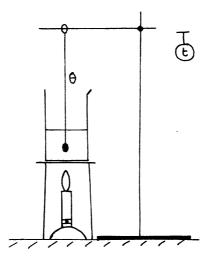
Cet article peut faire l'objet d'une séance de travaux pratiques en classe de première S d'une durée d'une heure et demie. La vaporisation complète des 50 ml d'eau peut durer de quinze à quarante minutes selon le réglage du bec Bunsen. Vous serez toujours agréablement surpris par les résultats obtenus.

1. BUT DE LA MANIPULATION

Déterminer la chaleur latente de vaporisation $L_{\rm v}$ de l'eau à 100°C sous la pression atmosphérique.

2. MODE OPÉRATOIRE

- Introduire une masse m = 0.050 kg d'eau distillée à l'aide d'une fiole jaugée de 50 ml dans un bécher de 100 ml.
- Régler le bec Bunsen sur un débit assez fort qu'on ne modifiera plus jusqu'à la fin de la manipulation. Ce réglage se fera assez loin du bécher.
- Noter la température θ_1 de l'eau et du bécher.
- Placer le bec Bunsen sous le bécher et déclencher le chronomètre en même temps.
- Au bout d'un temps t' = 2 min = 120 s, noter la température θ_2 de l'eau et du bécher sans arrêter le chronomètre.
- Enlever alors le thermomètre pour éviter que la vapeur d'eau ne se condense dessus pendant l'ébullition.
- Dès que la dernière goutte d'eau s'est vaporisée, arrêter le chronomètre et relever le temps t de vaporisation complète de l'eau.
- Déterminer la masse m' du bécher à l'aide d'une balance électrique.



3. CALCUL DE L_v

On calcule la quantité de chaleur Q' fournie par le bec Bunsen pour chauffer le bécher et l'eau de θ_1 à θ_2 .

Soit:
$$Q' = (m' \cdot c' + m \cdot c) \cdot (\theta_2 - \theta_1)$$

On donne les chaleurs massiques du pyrex et de l'eau :

$$c' = 840 \text{ J.kg.K}^{-1}$$
 $c = 4186 \text{ J.kg.K}^{-1}$

On calcule ensuite la quantité de chaleur Q fournie par le bec Bunsen pour chauffer le bécher et l'eau de θ_1 à $100^\circ C$ et pour vaporiser complètement l'eau.

Soit :
$$Q = (m' \cdot c' + M \cdot c) (100 - \theta_1) + m \cdot L_v$$

Le débit du bec Bunsen étant maintenu constant durant toute la manipulation, la quantité de chaleur qu'il fournit est donc proportionnelle au temps de chauffage. D'où :

$$Q = k \cdot t'
Q' = k \cdot t'
Q' = t'/t \Rightarrow Q \cdot t' = Q' \cdot t$$

$$(m'$$
 , c' + m , $c)$ $(100$ – $\theta_1)$, t' + m , L_v , t' = $(m'$, c' + m , $c)$ $(\theta_2$ – $\theta_1)$, t

d'où:
$$L_v = \frac{(m'.c'+m.c)(\theta_2 - \theta_1).t - (m'.c'+m.c)(100 - \theta_1).t'}{m.t'}$$

Exemple de calcul

$$\begin{split} m' &= 54,75 \; g = 0,05475 \; kg & \theta_1 = 19,5^{\circ}C \quad \theta_2 = 83^{\circ}C \quad t' = 120 \; s \\ t &= 16 \; min \; 38 \; s = 998 \; s & L_v = 2285399 \; J \; . \; kg^{-1} = \textbf{2285 kJ.kg}^{-1} \end{split}$$

4. INTERVALLE DE CONFIANCE

En fin de séance on peut appliquer la méthode de l'étendue sur les différents résultats trouvés par le groupe de T.P. (se reporter à l'annexe).

Collection des résultats des binômes du groupe de T.P. en kJ.kg⁻¹ : 2130, 2197, 2202, 2468, 1961, 2057, 2482, 2124, 2230.

Nombre de mesures =
$$n = 9$$
 $(L_v)_{mov} = 2206 \text{ kJ.kg}^{-1}$

Étendue =
$$r = (L_v)_{max} - (L_v)_{min} = 2482 - 1961 = 521 \text{ kJ.kg}^{-1}$$

On choisit, par exemple, de déterminer l'intervalle de confiance au niveau de confiance 95 %.

Si n = 9 q (95 %)
$$\cdot$$
 r = 0,26 × 521 = 135 kJ.kg⁻¹

On obtient l'encadrement suivant :

$$(L_v)_{moy} - q (95 \%) . r < L_V < (L_v)_{moy} + q (95 \%) . r$$
 soit :
$$2071 \ kJ.kg^{-1} < L_v < 2341 \ kJ.kg^{-1}$$

En fait la valeur théorique de la chaleur latente de vaporisation de l'eau à 100°C et sous 760 mmHg vaut **2260 kJ.kg**⁻¹.

BIBLIOGRAPHIE

On peut consulter dans le B.U.P. n° 627 d'octobre 1980 à la page 99 l'article de M. René Moreau intitulé «Incertitudes affectant les mesures de Physique et de Chimie réalisées en classe».

Annexe Résumé sur la méthode de l'étendue

La méthode de l'étendue ne nécessite pas un grand nombre de mesures d'une même grandeur x. On a obtenu n mesures indépendantes $x_1, x_2, ..., x_i, ..., x_n$ d'une même grandeur dont la valeur réelle inconnue est X.

On souhaite déterminer un intervalle ayant une forte probabilité de contenir la vraie valeur X de la grandeur x. Cet intervalle s'appellera **intervalle de confiance**. La probabilité correspondante, qu'on exprime en pour-cent, s'appelle le **niveau de confiance**. On dit qu'on détermine un intervalle de confiance au niveau de confiance 95 % ou au niveau de confiance 99 %

Évidemment, plus on désire que l'intervalle de confiance ait une forte probabilité de contenir X, plus il faut l'élargir. Tous ces intervalles de confiance sont centrés sur la moyenne \overline{X} des n mesures : $\overline{X} = \Sigma x_i / n$. \overline{X} est le meilleur estimateur de X.

La méthode de l'étendue s'applique aux petits nombres de mesures. Elle utilise l'étendue r de la série des n mesures. r représente la différence entre les mesures extrêmes x_{max} et x_{min} : $r = x_{max} - x_{min}$. Lorsque n ne dépasse pas 12, cette méthode est très efficace.

L'intervalle de confiance est : $[\overline{X} - q \cdot r, \overline{X} + q \cdot r]$. Au niveau de confiance 95 %, par exemple, la probabilité pour que la double inégalité : $\overline{X} - q \cdot r < X < \overline{X} + q \cdot r$ soit satisfaite est 0,95.

Cette méthode fait intervenir un coefficient q qui dépend de l'effectif n de la série de mesures et du niveau de confiance choisi.

n	2	3	4	5	6	7	8	9	10	12
q (95 %)	6,35	1,30	0,72	0,51	0,40	0,33	0,29	0,26	0,23	0,19
q (99 %)	31,8	3,01	1,32	0,84	0,63	0,51	0,43	0,37	0,33	0,28