
TIP2955 PNP SILICON POWER TRANSISTORS

SLPS063 Revised March 1990

- **Designed for Complementary Use with TIP3055**
- 90 W at 25°C Case Temperature
- 15 A Rated Collector Current
- Designed for Automotive Ignition, Linear Amplifier and Power **Amplifier Applications**

PACKAGE: SOT93

Absolute Maximum Ratings at 25°C Case Temperature (unless otherwise noted)

		TIP2955
V _{CBO}	Collector - base voltage (I _E = 0)	-100 V
VCER	Collector - emitter voltage (R _{BE} = 100 Ω)	-70 V
VEBO	Base - emitter voltage	-7 V
lc	Continuous collector current	-15 A
lg.	Continuous base current	-7 A
P _{tot}	Continuous device dissipation at (or below) 25°C case temperature (Note 1)	90 W
P _{tot}	Continuous device dissipation at (or below) 25°C free - air temperature (Note 3)	3.5 W
Ic ² L/2	Unclamped inductive load energy (Note 3)	62.5 mJ
T _j & T _{stg}	Operating junction and storage temperature range	-65°C to + 150°C
 Tı	Lead temperature 3.2 mm from case for 10 seconds	260°C

2: Derate linearly to 150°C free - air - temperature at the rate of 28 mW/°C.

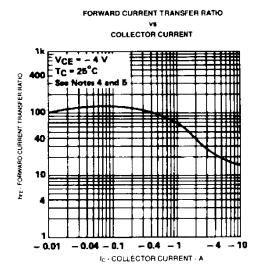
3 This rating is based on the capability of the transistor to operate safety in a prout of: L = 20 mH. Reez \times 100 Ω , Verz = 0 V, Rs = 0.1 Ω , V_{CC} = 10 V. Energy = $l_c^2/2$.

Electrical Characteristics at 25°C Case Temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _(BR) CEO	Collector - emitter breakdown voltage	lc = -30 mA (Note 4)	l _B = 0	-60			٧
ICEO	Collector - emitter cut - off current	V _{CE} = -30 V	I _B = 0			-0.7	mA
ICEV	Voltage between base and emitter	V _{CE} = -100 V	V _{BE} = 1.5 V			-5	mA
I _{EBO}	Emitter cut - off current	V _{EB} = -7 V	Ic = 0	1		-5	mA
hFE	Forward current transfer ratio	VCE = -4 V VCE = -4 V		20 5		70	
V _{CE(sat)}	Collector - emitter saturation voltage		lc = -4 A lc = -10 A (Notes 4 & 5)			-1.1 -3	٧
VBE	Base - emitter voltage	Vce = -4 V	I _C = -4 A (Notes 4 & 5)			-1.8	٧
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A f = 1 kHz	20			
h _{te}	Small signal forward current transfer ratio	V _{CE} = -10 V	Ic = -0.5 A f = 1 MHz	3		:	

NOTES 4 These parameters must be measured using pulse techniques, t_w = 300µs, duty cycle ≤ 2%
5 These parameters must be measured using voltage sensing contacts separate from the current - carrying contacts located within 3 2mm from the device body
6 This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped inductive load.

TIP2955 PNP SILICON POWER TRANSISTORS


Thermal Characteristics PARAMETER MIN TYP MAX UNIT RBJC Junction - to - case thermal resistance RBJA Junction - to - free - air thermal resistance 35.7 °C/W

Resistive - Load - Switching Characteristics at 25°C Case Temperature (unless otherwise noted)

PARAMETER		ARAMETER		TEST CONDITIONS [†]			TYP	MAX	UNIT]
	ton	Turn on time	Ic = -6 A	$I_{B(on)} = -0.6 \text{ A}$	$I_{B(oH)} = 0.6 \text{ A}$		0.4	: : 	μs	
	ton	Turn off time	V _{BE(off)} = 4 V	A _L = 5 Ω			0.7		μs	

¹ Voltage and current values shown are nominal, exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS

-100 -40 -500 µs, d = 0.1 = 10% -100 ms, d =

MAXIMUM FORWARD - BIAS

SAFE OPERATING AREA

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated