INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4520B MSI Dual binary counter

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4520B MSI

DUAL BINARY COUNTER

The HEF4520B is a dual 4-bit internally synchronous binary counter. The counter has an active HIGH clock input (CP₀) and an active LOW clock input (\overline{CP}_1), buffered outputs from all four bit positions (O₀ to O₃) and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP₀ input if \overline{CP}_1 is HIGH or the HIGH to LOW transition of the \overline{CP}_1 input if CP₀ is LOW. Either CP₀ or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O₀ to O₃ = LOW) independent of CP₀, \overline{CP}_1 .

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

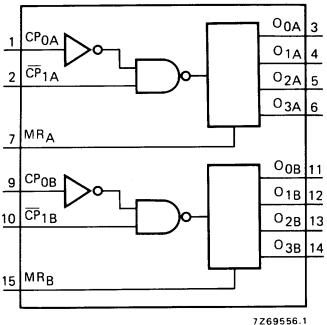


Fig. 1 Functional diagram.

16 15 14 13 12 11 10 9

V_{DD} MR_B O_{3B} O_{2B} O_{1B} O_{0B} $\overline{CP}_{1B}CP_{0B}$ HEF4520B

CP_{0A} $\overline{CP}_{1A}O_{0A}$ O_{1A} O_{2A} O_{3A} MR_A V_{SS}

1 2 3 4 5 6 7 8

7269516

Fig. 2 Pinning diagram.

HEF4520BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4520BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4520BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

CP_{0A}, CP_{0B} clock inputs (L to H triggered)
CP_{1A}, CP_{1B} clock inputs (H to L triggered)

MRA, MRB master reset inputs

 O_{0A} to O_{3A} outputs O_{0B} to O_{3B} outputs

FAMILY DATA

see Family Specifications

IDD LIMITS category MSI

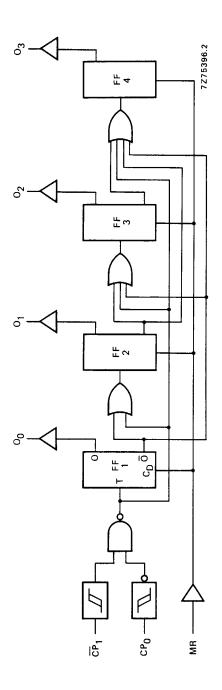


Fig. 3 Logic diagram (one counter).

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)
 X = state is immaterial
 ∫ = positive-going transition
 ∠ = negative-going transition

тореш	counter advances	counter advances	no change	no change	no change	no change	O_0 to $O_3 = LOW$
MR	ب	لہ	_	اب		_	I
CP ₁	I	/	×	<u>\</u>	ب		×
$^{\mathrm{CP}_0}$	ſ	ب	,,	×	<u> </u>	I	×
	<u>CP</u> 1 MR	<u>CP</u> 1 MR H L	<u>CP</u> 1 MR ⊢ ⊢ ⊢ ✓	CP ₁ × ∧ × × × ×	<u>CP</u>	<u>CP</u> 1 MR	□ H / X / 1 / M W L

HEF4520B MSI

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	symbol	min.	typ.	max.	typical extrapolation formula
Propagation delays CP ₀ , CP HIGH to LOW	5 10 15	^t PHL		110 50 40	220 ns 100 ns 80 ns	83 ns + (0,55 ns/pF) C _L 39 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		110 50 40	220 ns 100 ns 80 ns	83 ns + (0,55 ns/pF) CL 39 ns + (0,23 ns/pF) CL 32 ns + (0,16 ns/pF) CL
MR → O _n HIGH to LOW	5 10 15	^t PHL		75 35 25	150 ns 70 ns 50 ns	48 ns + (0,55 ns/pF) Сլ 24 ns + (0,23 ns/pF) Сլ 17 ns + (0,16 ns/pF) Сլ
Output transition times HIGH to LOW	5 10 15	^t THL		60 30 20	120 ns 60 ns 40 ns	10 ns + (1,0 ns/pF) Cլ 9 ns + (0,42 ns/pF) Cլ 6 ns + (0,28 ns/pF) Cլ
LOW to HIGH	5 10 15	^t TLH		60 30 20	120 ns 60 ns 40 ns	10 ns + (1,0 ns/pF) Cլ 9 ns + (0,42 ns/pF) Cլ 6 ns + (0,28 ns/pF) Cլ
Minimum CP ₀ pulse width; LOW	5 10 15	^t WCPL	60 30 20	30 15 10	ns ns ns	
Minimum CP ₁ pulse width; HIGH	5 10 15	^t WCPH	60 30 20	30 15 10	ns ns ns	
Minimum MR pulse width; HIGH	5 10 15	^t WMRH	30 20 16	15 10 8	ns ns ns	
Recovery time for MR	5 10 15	[‡] RMR	50 30 20	25 15 10	ns ns ns	see also waveforms Figs 4 and 5
Set-up times CP ₀ → CP ₁	5 10 15	t _{su}	50 30 20	25 15 10	ns ns ns	
CP ₁ → CP ₀	5 10 15	t _{su}	50 30 20	25 15 10	ns ns ns	
Maximum clock pulse frequency	5 10 15	f _{max}	8 15 20	16 30 40	MHz MHz MHz	

HEF4520B MSI

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	typical formula for P (μW)	where f _i = input freq. (MHz)		
Dynamic power dissipation per package (P)	5 10 15	$850f_{i} + \Sigma(f_{o}C_{L}) \times V_{DD}^{2}$ $3800f_{i} + \Sigma(f_{o}C_{L}) \times V_{DD}^{2}$ $10200f_{i} + \Sigma(f_{o}C_{L}) \times V_{DD}^{2}$	f_O = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_OC_L)$ = sum of outputs V_{DD} = supply voltage (V)		

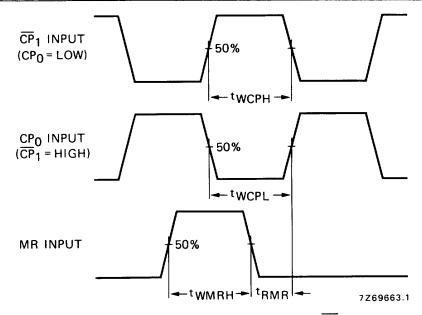


Fig. 4 Waveforms showing recovery time for MR; minimum CP₀, $\overline{\text{CP}}_1$ and MR pulse widths.

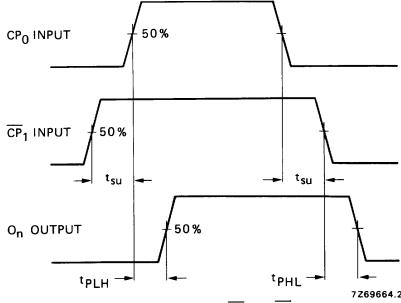


Fig. 5 Waveforms showing set-up times for CP_0 to \overline{CP}_1 and \overline{CP}_1 to CP_0 , and propagation delays.

HEF4520B MSI

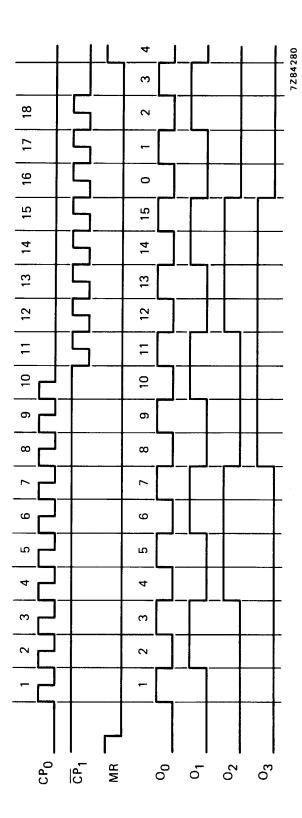


Fig. 6 Timing diagram.