INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4518B MSI Dual BCD counter

Product specification
File under Integrated Circuits, IC04

January 1995

Dual BCD counter

HEF4518B MSI

DUAL BCD COUNTER

The HEF4518B is a dual 4-bit internally synchronous BCD counter. The counter has an active HIGH clock input (CP₀) and an active LOW clock input (\overline{CP}_1), buffered outputs from all four bit positions (O₀ to O₃) and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP₀ input if \overline{CP}_1 is HIGH or the HIGH to LOW transition of the \overline{CP}_1 input if CP₀ is LOW. Either CP₀ or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O₀ to O₃ = LOW) independent of CP₀, \overline{CP}_1 .

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

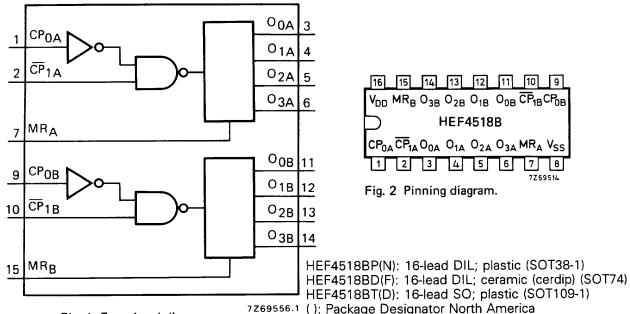


Fig. 1 Functional diagram.

PINNING

 $\overline{\text{CP}}_{1A}$, $\overline{\text{CP}}_{1B}$ clock inputs (L to H triggered)

MRA, MRB master reset inputs

O_{0A} to O_{3A} outputs O_{0B} to O_{3B} outputs

APPLICATION INFORMATION

Some examples of applications for the HEF4518B are:

- Multistage synchronous counting.
- Multistage asynchronous counting.
- Frequency dividers.

FAMILY DATA
see Family Specifications
IDD LIMITS category MSI

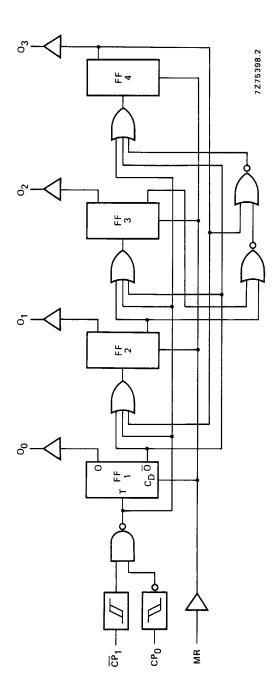


Fig. 3 Logic diagram (one counter).

	HIGH state (the more positive voltage)	L = LOW state (the less positive voltage)	X = state is immaterial	f = positive-going transition	\ = negative-going transition		
	counter advances	counter advances	no change	no change	no change	no change	On to On = 1 OW
_		_	_	_			ı

	mode	counter advances	counter advances	no change	no change	no change	no change	0_0 to $0_3 = LOW$
	MR	J	ب	_	_	١		I
	<u>CP</u> ₁	Н	~	×	7		رم	×
	CPO	ſ		ر	×	۲,	I	×

FUNCTION TABLE

Dual BCD counter

HEF4518B MSI

A.C. CHARACTERISTICS

 v_{SS} = 0 V; $\rm T_{amb}$ = 25 °C; $\rm C_L$ = 50 pF; input transition times \leq 20 ns

	V _{DD}	symbol	min.	typ.	max.	typical extrapolation formula
Propagation delays CP ₀ , CP ₁ → O _n HIGH to LOW	5 10 15	^t PHL		120 55 40	240 ns 110 ns 80 ns	93 ns + (0,55 ns/pF) C _L 44 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _l
LOW to HIGH	5 10 15	^t PLH		120 55 40	240 ns 110 ns 80 ns	93 ns + (0,55 ns/pF) C _L 44 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
MR → O _n HIGH to LOW	5 10 15	^t PHL		75 35 25	150 ns 70 ns 50 ns	48 ns + (0,55 ns/pF) C _L 24 ns + (0,23 ns/pF) C _L 17 ns + (0,16 ns/pF) C _L
Output transition times HIGH to LOW	5 10 15	^t THL		60 30 20	120 ns 60 ns 40 ns	10 ns + (1,0 ns/pF) Cլ 9 ns + (0,42 ns/pF) Cլ 6 ns + (0,28 ns/pF) Cլ
LOW to HIGH	5 10 15	^t TLH		60 30 20	120 ns 60 ns 40 ns	10 ns + (1,0 ns/pF) Cլ 9 ns + (0,42 ns/pF) Cլ 6 ns + (0,28 ns/pF) Cլ
Minimum CP ₀ pulse width; LOW	5 10 15	^t WCPL	60 30 20	30 15 10	ns ns ns	_
Minimum CP ₁ pulse width; HIGH	5 10 15	^t WCPH	60 30 20	30 15 10	ns ns ns	
Minimum MR pulse width; HIGH	5 10 15	^t WMRH	30 20 16	15 10 8	ns ns ns	
Recovery time for MR	5 10 15	^t RMR	50 30 20	25 15 10	ns ns ns	see also waveforms Figs 4 and 5
Set-up times CP ₀ → CP ₁	5 10 15	t _{su}	50 30 20	25 15 10	ns ns ns	
CP ₁ → CP ₀	5 10 15	t _{su}	50 30 20	25 15 10	ns ns ns	
Maximum clock pulse frequency	5 10 15	^f max	8 15 20	16 30 40	MHz MHz MHz	

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; input transition times $\leq 20 \text{ ns}$

	V _{DD} V	typical formula for P (μW)	where f _i = input freq. (MHz) f _O = output freq. (MHz)
Dynamic power dissipation per package (P)	5 10 15	750 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 3300 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 8000 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	C_L = load capacitance (pF) $\Sigma(f_0C_L)$ = sum of outputs V_{DD} = supply voltage (V)
CP ₁ IN (CP ₀ = L		50%	
<u>CP</u> ₀ IN (CP ₁ = H		50% twcpL	
MR INF	——	50%	- 7 Z6966 3.1

Fig. 4 Waveforms showing recovery time for MR; minimum CP₀, $\overline{\text{CP}}_1$ and MR pulse widths.

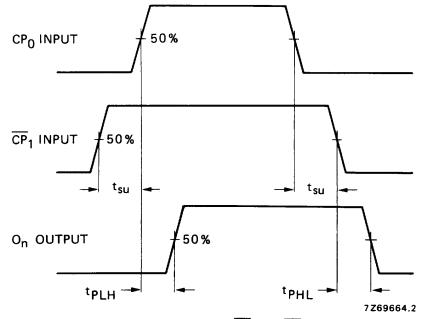


Fig. 5 Waveforms showing set-up times for CP₀ to $\overline{\text{CP}}_1$ and $\overline{\text{CP}}_1$ to CP₀, and propagation delays.

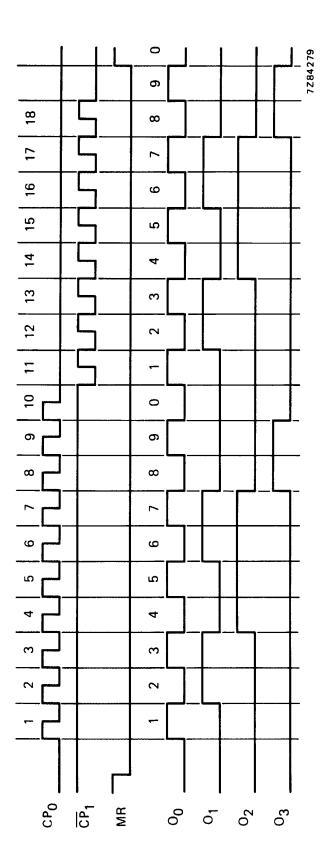


Fig. 6 Timing diagram.