INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

HEF40106B gates

Hex inverting Schmitt trigger

DESCRIPTION

Each circuit of the HEF40106B functions as an inverter with Schmitt-trigger action. The Schmitt-trigger switches at different points for the positive and negative-going input signals. The difference between the positive-going voltage (V_P) and the negative-going voltage (V_N) is defined as hysteresis voltage (V_H).

This device may be used for enhanced noise immunity or to "square up" slowly changing waveforms.

HEF40106BP(N):	14-lead DIL; plastic			
	(SOT27-1)			
HEF40106BD(F):	14-lead DIL; ceramic (cerdip)			
	(SOT73)			
HEF40106BT(D):	14-lead SO; plastic			
	(SOT108-1)			
(): Package Designator North America				

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

HEF40106B gates

DC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 $^\circ C$

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Hysteresis	5		0,5	0,8		V
voltage	10	V _H	0,7	1,3		V
	15		0,9	1,8		V
Switching levels	5		2	3,0	3,5	V
positive-going	10	V _P	3,7	5,8	7	V
input voltage	15		4,9	8,3	11	V
negative-going	5		1,5	2,2	3	V
input voltage	10	V _N	3	4,5	6,3	V
	15		4	6,5	10,1	V

HEF40106B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA	
Propagation delays							
$I_n \rightarrow O_n$	5		90	180	ns	63 ns + (0,55 ns/pF) C _L	
HIGH to LOW	10	t _{PHL}	35	70	ns	24 ns + (0,23 ns/pF)	
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L	
	5		75	150	ns	48 ns + (0,55 ns/pF) C _L	
LOW to HIGH	10	t _{PLH}	35	70	ns	24 ns + (0,23 ns/pF) C _L	
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L	
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L	
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L	
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L	
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L	
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L	
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L	

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	2 300 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	9 000 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	20 000 f _i + Σ (f _o C _L) \times V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma (f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

HEF40106B gates

$f_{i,j}^{0}$ $f_{i,j}^{0}$

Hex inverting Schmitt trigger

HEF40106B gates

f_{2}^{2}

If a Schmitt trigger is driven via a high impedance (R > 1 k Ω) then it is necessary to incorporate a capacitor C of such value that: $\frac{C}{C_p} > \frac{V_{DD} - V_{SS}}{V_H}$, otherwise oscillation can occur on the edges of a pulse. C_p is the external parasitic capacitance between input and output; the value depends on the circuit board layout.

HEF40106B gates

APPLICATION INFORMATION

Some examples of applications for the HEF40106B are:

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators.

Package information

Package outlines

95-01-23

97-05-22

 \bigcirc

SO

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

076E06S

MS-012AB

Package information

Package outlines

SOT27-1

DIP

DIP14: plastic dual in-line package; 14 leads (300 mil)

Note

inches

0.17

0.020

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

0.044

0.015

0.009

0.13

OUTLINE	OUTLINE REFERENCES					
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11

0.24

0.73

0.10

0.30

0.12

0.31

0.33

0.01

0.087