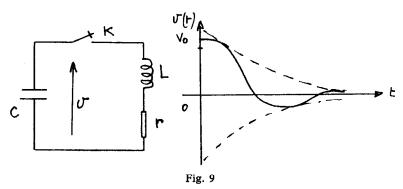
CONCEPTION D'UN OSCILLATEUR « LC » PAR ASSOCIATION D'UN CIRCUIT RESONNANT ET D'UN DIPOLE A RESISTANCE NEGATIVE

I. PRINCIPE.

En déchargeant un condensateur dans une bobine de bonne qualité, on constate que la tension à ses bornes évolue de façon

sinusoïdale exponentiellement amortie $\left(\frac{r}{2}\sqrt{\frac{C}{L}} < 1\right)$.



L'amplitude ne se maintient pas constante car lors des échanges d'énergie électrostatique et électromagnétique, une puissance est consommée par effet Joule dans r.

L'amplitude des oscillations peut être maintenue constante à condition qu'un dipôle connecté en parallèle sur le circuit résonnant compense à chaque période la puissance consommée par r.

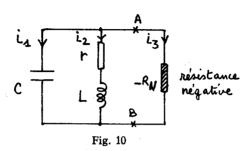
Une résistance négative — R_N , soumise à une tension $v = V\sqrt{2}\cos(\omega t)$ absorbe une puissance négative $P = V^2/(-R_N)$.

C'est la puissance V^2/R_N qui devra compenser les pertes Joule dans la résistance r.

Cette idée est développée ci-après puisque l'on sait que certains composants semi-conducteurs (transistor unijonction, diode tunnel, thyristor...) possèdent des parties de caractéristique à résistance dynamique négative (dv/di < 0) et que l'amplificateur opérationnel convenablement bouclé présente cette propriété remarquable.

II. CONDITION D'AMORÇAGE DES OSCILLATIONS.

Soit donc le montage de principe :



 $-R_N$ est une schématisation du montage électronique qui permet effectivement d'avoir entre A et B, pour la tension variable v, l'équivalent d'une résistance négative.

Si les oscillations sinusoïdales prennent naissance :

$$j C\omega \underline{V} + \frac{\underline{I}_{1} + \underline{I}_{2} + \underline{I}_{3} = 0}{r + j L\omega} \cdot \underline{V} + \frac{1}{(-R_{N})} \cdot \underline{V} = 0$$

quel que soit \underline{V} dans le domaine de linéarité du dipôle ; d'où :

$$j C_{\infty} + \frac{r}{r^2 + L^2 \omega^2} - \frac{j L_{\infty}}{r^2 + L^2 \omega^2} - \frac{1}{R_N} = 0$$

soit:

$$C - \frac{L}{r^2 + L^2\omega^2} = 0;$$
 $\frac{r}{r^2 + L^2\omega^2} - \frac{1}{R_N} = 0$

pour une bobine de bonne qualité : $Q = L\omega/r \gg 1$.

On déduit des deux équations précédentes :

$$\omega = \omega_0 = \frac{1}{\sqrt{LC}}; \quad R_N = \frac{L^2 \omega^2}{r} = rQ^2 = R = \frac{L}{rC}.$$

On vérifie que la somme des puissances actives est nulle :

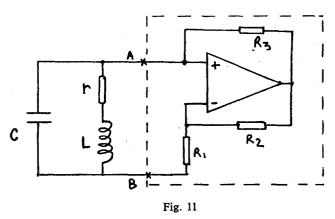
$$-\frac{V^{2}}{R_{N}} + r\left(\frac{V}{r^{2} + L^{2}\omega^{2}}\right)^{2} = 0 \quad \text{ou} \quad V^{2}\left(-\frac{1}{R_{N}} + \frac{r}{L^{2}\omega^{2}}\right) = 0$$

Pour une valeur de R_N supérieure à R, les pertes Joule ne sont pas compensées et l'amplitude des oscillations tend vers 0.

Pour une valeur de R_N inférieure à R, la résistance négative surcompense les pertes Joule dans r et l'amplitude des oscillations croît en entraînant le composant dans son domaine non linéaire.

III. EXEMPLE.

Nous reprenons, bien sûr, le même qu'en A.II. pour comparer les deux méthodes.



III.1. Caractéristique tension-courant du dipôle AB.

On part de la caractéristique de transfert en continu de l'amplificateur opérationnel :

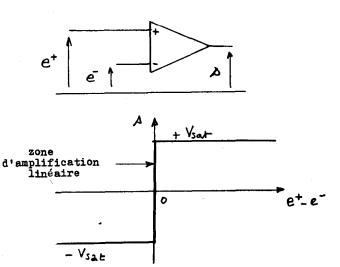


Fig. 12

On considère le dipôle AB pour lequel on recherche la caractéristique $I\left(V\right)$:

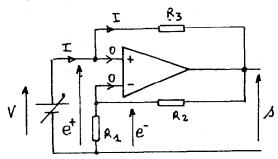


Fig. 13

Dans la zone d'amplification linéaire $e^+ = e^-$:

$$I = \frac{V - s}{R_1}, \qquad V = [R_1/(R_1 + R_2)] s$$

en éliminant s entre les deux expressions, il vient :

$$\frac{V}{I} = -(R_1/R_2) \cdot R_3 = -R_N$$

le dipôle est équivalent à une résistance négative tant que :

$$-V_{sat} \leq s \leq +V_{sat}$$

limites de la zone à résistance négative.

POINT A:

$$s = + V_{sat}, V = R_1 \cdot V_{sat}/(R_1 + R_2),$$

 $I = -R_2 V_{sat}/[R_3 (R_1 + R_2)].$

POINT B:

 $s = -V_{sat}$, symétrique de A par rapport à O.

Zône de saturation:

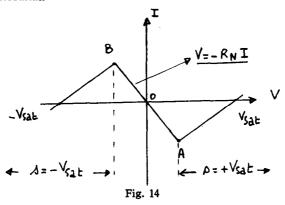
$$s = + V_{sat}, I = (V - V_{sat})/R_3$$

 $e^+ > e^- \quad donc \quad V > R_1 V_{sat}/(R_1 + R_2)$

Zône de saturation:

$$s = -V_{sat}$$
, $I = (V + V_{sat})/R_3$
 $e^+ < e^-$ donc $V < -R_1 V_{sat}/(R_1 + R_2)$.

Résultat.



111.2. Condition d'amorçage.

Dans la zone de linéarité : $R_N = R$, or : $R_N = R_1 R_3/R_2$, d'où la condition déjà trouvée en A.II.