Source de courant à fort débit :

REALISATION - APPLICATIONS

par René ALLARD, Lycée H. Bergson, 49000 Ángers.

1. INTRODUCTION.

Nous manipulons fréquemment des sources de tension pratiquement parfaites, les alimentations stabilisées, mais nous utilisons rarement des sources de courant au laboratoire. La vérification expérimentale du comportement de certains circuits et la réalisation de quelques expériences d'électromagnétisme requièrent une source de courant. Celle que nous avons conçue peut débiter un courant de forme quelconque, continu, triangulaire,... avec une intensité importante, pouvant dépasser 1 A. Quelques exemples d'utilisation de cette source de courant seront données après la description de sa réalisation.

2. SOURCE DE COURANT A FORT DEBIT

Elle est réalisée à partir d'un amplificateur opérationnel de puissance, TCA 365, fabriqué par Siemens.

2.1 Caractéristiques du TCA 365

Conçu pour la commande des moteurs électriques, cet ampli op. permet également la réalisation d'amplificateurs de puissance, de tensions continues ou variables, capables de débiter une intensité supérieure à 1A.

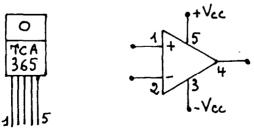


Fig. 1

Alimentation symétrique max. ± 18 V. Puissance maximale à la sortie : 15 W. Intensité maximale à la sortie : 3 A.

Pente maximale du signal de sortie : 4 V. μs⁻¹

(pour un 741 : 0,5 V. μ s⁻¹).

Taux de réjection de mode commun: 80 dB. Tension de décalage à l'entrée inférieure à 10 mV. Courant de décalage à l'entrée inférieur à 200 mA.

Impédance d'entrée : 5 M Ω . Impédance de sortie très faible.

2.2 Le circuit électrique · Fig. 2

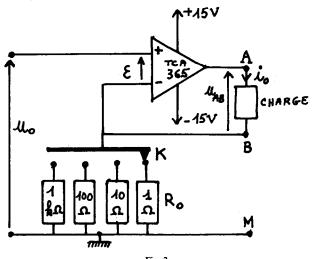


Fig. 2

L'A.O. est supposé parfait et utilisé en régime linéaire ; la tension d'entrée ϵ et les courants d'entrée, i + et i -, sont pratiquement nuls. La charge, de bornes A et B, et une des résistances R_O sont alors parcourues par le même courant d'intensité i_O . Une tension u_O est appliquée entre l'entrée (+) de l'A.O. et la masse ; on a $u=R_Oi_O$ ou

$$i_O = \frac{u_O}{R_O}$$

Ce montage permet donc de transformer une source de tension \mathbf{u}_0 en une source de courant pratiquement parfaite, \mathbf{i}_0 étant le courant électromoteur.

2.3 Utilisation

Cette source de courant pouvant fournir une puissance de 10 W à la charge, l'A.O. devra être monté sur un dissipateur thermique.

L'expérience montre qu'il y a des risques d'oscillations de l'A.O. pour certaines caractéristiques de la charge ou pour certaines valeurs de $R_{\rm O}$; par conséquent il faudra toujours contrôler la tension $u_{\rm AB}$, aux bornes de la charge, à l'oscillographe, pour s'assurer de la stabilité du montage et de la non-saturation de l'A.O. Les 4 valeurs qui peuvent être données à $R_{\rm O}$, grâce au sélecteur K, sont voisines de 1 Ω , 10 Ω , 100 Ω ou 1 k Ω ; elles devront être connues avec une précision suffisante car elles interviennent dans le calcul de $i_{\rm O}$.

Performances de la source avec une charge purement résistive de $10~\Omega$: Prenons $R_O=1~\Omega$ et $u_O=1~V$ crête à crête ; la tension u_{AB} reproduit fidèlement les variations de u_O , à un facteur près, jusqu'à des fréquences de $30~\rm kHz$ pour les signaux triangulaires et $10~\rm kHz$ pour les signaux carrés.

2.4. Visualisation simultanée de uo et uAB

La charge n'ayant pas de borne au potentiel de la masse, il est généralement nécessaire pour visualiser u_{AB} , d'utiliser un amplificateur de différence (Fig. 3). $u_{AB} = \vartheta_A - \vartheta_B$; $u_s = u_{AB}$. La visualisation simultanée de u_{AB} et u_o permet d'étudier la réponse du dipôle (A,B) en fonction de l'excitation par un courant

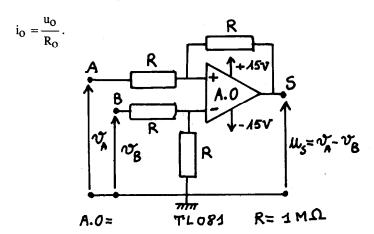


Fig. 3

2.5 Remarque

Un autre schéma de source de courant, avec charge à la masse, est proposé en annexe.

3. SOURCES DE TENSION - SOURCES DE COURANT

Nous pouvons mettre en évidence les différences de comportement de ces deux types de sources d'énergie électrique en les branchant à des associations en série ou en parallèle d'ampoules identiques (3,5 V - 300 mA). L'observation de la lumière émise par ces ampoules nous renseigne immédiatement sur le sens de variation de l'intensité du courant dans chacune d'elles, dans une expérience de cours. Considérons par exemple l'association en série. Fig. 4 et 5.

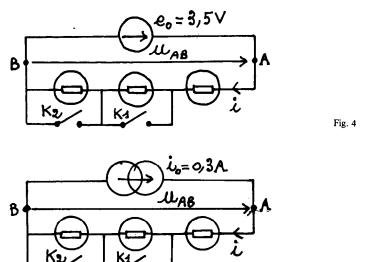


Fig. 5

3.1 La source de tension (Fig. 4)

impose au circuit une tension constante $u_{AB} = e_o$. Lorsque le nombre d'ampoules alimentées croît, la puissance lumineuse émise par chacune d'elles diminue ; l'intensité i décroît.

3.2 La source de courant (Fig. 5)

impose au circuit une intensité constante $i=i_0$. Lorsque le nombre d'ampoules alimentées croît, la puissance lumineuse émise par chacune d'elles reste constante ; la tension u_{AB} croît.

4. EXPERIENCES AVEC DES DIODES

On se propose d'étudier la tension u_{AB} aux bornes d'une diode en fonction de l'intensité du courant qui la traverse. La source de courant est commandée par une tension u_{O} , triangulaire, alternative, de fréquence $N=200~{\rm Hz}$.

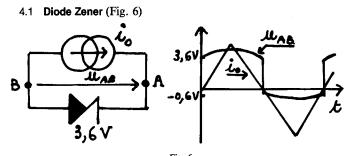


Fig. 6 Source de courant : $R_{O} = 100 \, \Omega$ $i_{O} = 60 \, mA$ crête à crête.

L'oscillogramme montre que u_{AB} croît légèrement lorsque i_O augmente, en valeur absolue, mais que sa valeur reste voisine de 3,6 V ou -0.6 V.

4.2 Diode de redressement (Fig. 7)

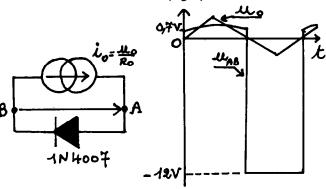
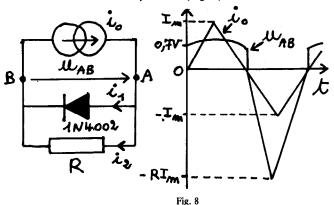


Fig. 7 Source de courant : $\mathbf{R}_{\mathbf{O}} = 1 \Omega$ $\mathbf{u}_{\mathbf{O}} = 1 \mathbf{V}$ crête à crête.

Lorsque u_0 est positif la diode laisse passer le courant et u_{AB} est voisin de 0,7 V. Lorsque u_0 est négatif, la diode s'oppose au passage du courant i_0 ; tout se passe comme si aucun dipôle n'était branché entre A et B; l'ampli op. est saturé et $u_{AB} \simeq -12$ V.

4.3 Diode et résistance en parallèle (Fig. 8)



Source de courant : $R_0 = 10 \Omega$ $i_0 = 1 \text{ A crête à crête}$.

On prend $R = 10 \Omega$.

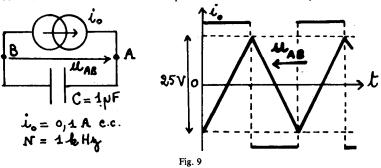
Quand la diode conduit le courant, elle impose une tension u_{AB} pratiquement constante (0,7 V) aux bornes du circuit;

$$i_2 \simeq \frac{0.7}{R}$$
; $i_1 = i_0 - i_2$.

Quand la diode est bloquée, le courant i_O débité par la source passe intégralement dans la résistance R; $i_1=0$; $i_2=i_O$; $u_{AB}=Ri_O$. Notons que le produit RI_m doit être inférieur à 12 V environ pour que u_{AB} ne soit pas écrêtée lorsque i_O est négatif.

5. CHARGE ET DECHARGE D'UN CONDENSATEUR PAR UN COURANT CONSTANT.

Des charges et des décharges alternées peuvent être obtenues en commandant la source de courant par une tension alternative, en créneaux.



Au cours d'une demi-période de i_O, la tension u_{AB} aux bornes du condensateur varie de

$$\Delta u_{AB} = \frac{i_0 T}{2 C} ;$$

$$\Delta u_{AB} = \frac{5 \times 10^{-2} \times 1}{2 \times 10^{3} \times 10^{-6}} = 25 \text{ V}.$$

Ce montage permet d'obtenir des signaux triangulaires à partir de signaux rectangulaires.

6. REPONSE EN TENSION D'UN CIRCUIT INDUCTIF

excité par un courant en créneaux.

Un circuit (Fig. 10), formé d'une bobine d'inductance $L=8\,\text{mH}$, de résistance $r=5\,\Omega$ est monté en parallèle avec une résistance R. La source de courant délivre un courant en créneaux, de fréquence $N=200\,\text{Hz}$.

Source de courant : $R_0 = 10 \Omega$; $u_0 = 0,1 \text{ V crête à crête.}$

Visualisons les tensions $u_0 = R_0 i_0$ et u_{AB} .



6.1 Influence de R sur uAB.

Les oscillogrammes de la figure 12 montrent que u_{AB} décroît et croît d'autant plus rapidement que R est grand.

6.2 Interprétation des résultats

Etablissons les expressions de i_1 et u_{AB} (Fig. 11) en fonction du temps ; la période T de la source de courant est suffisamment grande

$$(T = \frac{1}{200} = 5.10^{-3} \text{ s})$$

pour que la décroissance et la croissance de u_{AB} puissent être observées séparément. On a les relations :

$$i_1 + i_2 = i_0$$
; $u_{AB} = L \frac{di_1}{dt} + ri_1 = Ri_2$

On en déduit l'équation différentielle, valable pour

$$t \in [0, \frac{T}{2}]$$
: $L\frac{di_1}{dt} + (r + R)i_1 = Ri_0$.

Sachant que l'intensité du courant dans une bobine inductive ne subit pas de discontinuité, on établit facilement l'expression de i₁:

$$i_1 = \frac{Ri_0}{R+r} \left(1 - e^{-\frac{t}{\tau}} \right)$$
 avec : $\tau = \frac{L}{R+r}$

 τ est la constante de temps du circuit.

L'expression de u_{AB} est : $u_{AB} = R (i_O - i_1)$

$$u_{AB} = \frac{Ri_0}{R+r} \left(r + Re^{\frac{-t}{\tau}}\right)$$

La figure 11 représente le graphe de uAB..

Pour t=0: $u_{AB}=Ri_0$. Pour $t=\frac{T}{2}$, u_{AB} a pratiquement atteint la limite correspondant à t infini parce que $\frac{T}{2}$ est beaucoup plus grand que τ :

$$u_{AB} = \frac{r Ri_0}{R + r}$$

De même on peut établir les équations de i_1 et de u_{AB} pendant la phase de croissance de u_{AB} , entre les instants $\frac{T}{2}$ et T:

$$i_0 = 0$$
; $i_1 + i_2 = 0$; $L \frac{di_1}{dt} + (r + R)i_1 = 0$.

On en déduit :

$$i_1 = \frac{Ri_0}{R+r} \stackrel{e}{\stackrel{\tau}{=}} \frac{-t}{\tau}$$

$$u_{AB} = \frac{-R_2i_0}{R+r} e^{\frac{-t}{\tau}}$$

Les deux expressions de u_{AB} et la formule de la constante de temps permettent d'interpréter les oscillogrammes pour différentes valeurs de R (Fig. 12).

L'étude de u_{AB} en fonction de la fréquence, à R constant, est également intéressante.

6.3 Comment rendre négligeable l'influence de R sur la réponse du circuit ?

Nous aurions souhaité obtenir la réponse de la bobine seule, à l'excitation par le courant $i_{\rm O}$; mais la tendance aux oscillations de la source de courant, lorsqu'elle alimente une charge inductive, nous oblige à brancher une résistance R en parallèle avec la bobine.

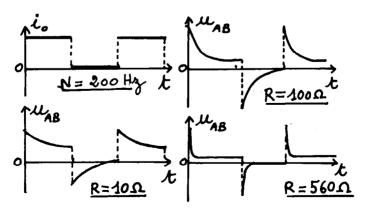


Fig. 12

a) Choix de la période T

de la source de courant pour que l'intensité i_1 dans la bobine puisse être assimilée à celle de la source i_0 .

Tout d'abord la limite de i_1 , pour t infini, lorsque le circuit a été soumis à un échelon de courant i_0 , doit être constante quelle que soit R:

$$\frac{R_{io}}{R+r}=i_{o}.$$

Cette condition implique que R soit très grand devant r. On peut prendre R $\geqslant 100~\rm r$; cependant le rapport $\frac{R}{r}$ ne doit pas être trop grand, sinon les oscillations parasites réapparaissent. L'expression approchée de i_1 est donc

$$i_1 = i_0 \left(1 - e^{-\frac{t}{\tau}} \right)$$

Pour que i_1 soit très peu différent de i_0 il faut aussi que la constante de temps τ soit très petite par rapport à la période T de la source de courant; l'expérience montre qu'il suffit de prendre $T \ge 100 \tau$.

En résumé, si R \geqslant 100 r et T \geqslant 100 τ tout se passe pratiquement comme si la résistance R n'existait pas.

b) Résultats expérimentaux

Observons l'oscillogramme de la Fig. 12 obtenu avec $R=560~\Omega$ et un courant i_0 de fréquence N=200~Hz.

Les deux conditions sur R et T sont remplies :

$$\frac{R}{r}$$
 = 112 $\frac{T}{7}$ = $\frac{5 \times 10^{-3}}{1.4 \times 10^{-5}}$ ≈ 360 .

L'oscillogramme constitue pratiquement la réponse de la bobine ; seules les valeurs maximale et minimale de u_{AB} ne sont pas correctes ; théoriquement elles devraient être infinies

$$(L\frac{di}{dt} \rightarrow \pm \infty)$$

lorsque i change brusquement de valeur, mais pratiquement elles se trouvent limitées respectivement à ${\rm Ri}_{\rm O}$ et

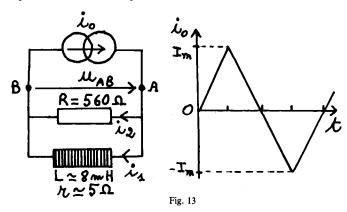
$$\frac{R^{2}i_{0}}{R+r}$$
 à cause de la présence de R, ou à la valeur de \pm 12 V à cause du phénomène de saturation de l'A.O.

7. DETERMINATION DE LA CONSTANTE DE TEMPS D'UNE BOBINE

7.1 Excitation d'une bobine par un courant triangulaire.

Cette expérience va permettre de déterminer directement sur l'oscillogramme la constante de temps $\frac{L}{r}$ d'une bobine et la f.é.m. d'auto-induction.

Réalisons le montage de la figure 13, la résistance R ayant pour rôle d'empêcher les oscillations parasites de s'établir.



La source de courant est commandée par une tension triangulaire u_O , parfaitement alternative, d'amplitude 0,5 V. Prenons $R_O=1\,\Omega$, l'amplitude de i_O est alors 0,5 A.

Caractéristiques du circuit :

$$\tau = \frac{L}{r + R} = \frac{8 \times 10^{-3}}{565} = 1,4 \times 10^{-5} \text{ s};$$

$$\frac{1}{R} = 7,1 \times 10^{4} \text{ Hz}.$$

Les valeurs numériques de τ et $\frac{R}{\Gamma}$ permettent de confondre i_1 et i_0 pour des fréquences inférieures à $\frac{1}{100 \tau} = 710$ Hz. Les oscillogrammes obtenus à des fréquences de 100 Hz et 200 Hz sont reproduits sur les Fig. 14 et 15 ; les échelles pour u_0 et u_{AB} sont différentes.

7.2 Lecture de la constante de temps sur l'oscillogramme.

Lorsque la fréquence de i₀ est suffisamment basse, la Fig. 14 montre que les segments M'₁ M₂, M'₂ M₃, . . . ont un point commun avec l'axe des temps.

Faisons le calcul correspondant à cette figure.

 $t \in [0,t_1]$: i est de la forme i = at; u_{AB} = rat + La

$$te[t_1,t_2]: i = -a(t-\frac{T}{2}); u_{AB} = -ra(t-\frac{T}{2})$$
— La

 u_{AB} s'annule pour la première fois à l'instant $\frac{T}{2} - \frac{L}{r}$ (point P_1) et u_0 à l'instant $\frac{T}{2}$ (point Q_1).

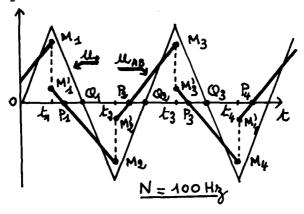


Fig. 14

On constate que la constante de temps $\tau = \frac{L}{r}$ est représentée par le segment P_1 Q_1 .

$$t \in [t_2, t_3] : i = a(t-T); u_{AB} = ra(t-T) + La.$$

 u_{AB} s'annule pour la seconde fois à l'instant $T-\frac{L}{r}$ et u_{O} à l'instant T. On constate que le segment $P_{2}Q_{2}$ représente également la constante de temps τ .

En résumé, la détermination de la constante de temps de la bobine revient à mesurer un des segments PQ sur l'oscillogramme.

Pour que la mesure soit correcte il faut s'assurer qu'en l'absence de tensions appliquées sur les deux voies de l'oscillographe (entrées DC), les deux traces du spot sont confondues.

En choisissant la fréquence de i_0 de manière à obtenir des segments PQ les plus grands possibles, on peut obtenir la valeur de τ avec une précision meilleure que 5%.

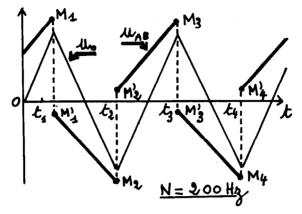


Fig. 15

Le calcul de l'inductance est possible après avoir mesuré la résistance de la bobine : $\dot{L} = \tau r$.

7.3 Bobine à constante de temps élevée

Pour que la constante de temps soit mesurable, il faut que la tension u_{AB} s'annule périodiquement comme dans le cas de la Fig. 14. Aussi il est parfois nécessaire d'abaisser la constante de temps τ ' du circuit en montant une résistance R_1 en série avec la bobine (L,r).

$$\tau' = \frac{L}{r + R_1}$$
 $\tau = \frac{L}{r}$

La mesure de τ ' permet de calculer τ :

$$\tau = \tau' \left(1 + \frac{R_1}{r} \right)$$

Exemple: self miniature TOKO marquée 1H.

$$r = 250 \Omega$$
 $\tau \simeq 4 \times 10^{-3} s$

Prenons $R_1 = 1 k\Omega$ et $R = 220 k\Omega$.

Source de courant : $R_0=1~k\Omega$; N=300~Hz ; $u_0=3~V$ crête à crête. On mesure $\tau'\simeq 7.2\times 10^{-4}~s$. On calcule

$$\tau = 7.2 \times 10^{-4} (1 + 4) = 3.6 \times 10^{-3} \text{ s}$$

On calcule $L = \tau r = 0.90 \text{ H}$.

7.4 Construction point par point de la réponse de la bobine

Elle peut être faite facilement par des élèves de Terminale, parce qu'elle ne nécessite pas la résolution d'une équation différentielle. Il faut représenter successivement les courbes i_O , ri_O , $L\frac{di_O}{dt}$ et $u_{AB}=ri_O+L\frac{di_O}{dt}$.

8. VERIFICATION DE LA FORMULE $e = -L \frac{di}{dt}$

8.1 Montage

Celui de la Fig. 13

8.2 Lecture de la f.é.m. d'auto-induction sur l'oscillogramme.

La f.é.m. d'auto-induction, $e=-L\frac{di}{dt}$ est égale à — La lorsque i_O croît régulièrement et à + La lorsque i_O décroît régulièrement ; ainsi lorsque $\frac{di}{dt}$ change de signe, u_{AB} subit une discontinuité égale à 2 La en valeur absolue, soit le double de |e|.

Sur l'oscillogramme de la Fig. 14 ou 15, on a donc :

$$M'_1 M_1 = M_2 M'_2 = M'_3 M^3 = --- = 2 |e|$$

On peut ainsi lire directement la valeur de la f.é.m. sur l'oscillogramme.

8.3 Vérifions que e est proportionnelle à $\frac{di}{dt}$

 i_0 est de la forme : $i_0 = \pm at + b$, b est une constante qui dépend de l'intervalle de temps considéré.

 I_m étant l'amplitude de i_0 , la variation de i_0 , pendant un quart de période est égale à I_m en valeur absolue ;

$$\left| \frac{di_0}{dt} \right| = a = \frac{4 I_m}{T} = 4 I_m N$$

$$M'_1 M_1 = M_2 M'_2 = 2 |e| = 8 LI_m N$$

Le tableau de la Fig. 16 montre que les résultats sont très bons ; u_0 a été choisie de manière à obtenir M'_1 $M_1 = 2$ V pour N = 100 Hz.

N(Hg)	100	200	300	400	500	
2 e	2٧	4٧	6,17	81	9,8Y	

Fig. 16

Avec des bobines du commerce, d'inductances 2 mH, 4 mH, 8 mH on vérifie aisément que e est proportionnelle à L, lorsqu'on fixe la valeur de $\frac{\text{dio}}{\text{dt}}$

8.4 Autre méthode de détermination de $\frac{L}{r}$

Les ordonnées de M' $_1$ et M_2 (Fig. 14 et 15) sont respectivement (ra $\frac{T}{4}$ — La) et (— ra $\frac{T}{4}$ — La) ; a=4 I $_m$ N.

La différence de ces ordonnées est : (M'₁ M₂) $\gamma = ra \frac{T}{2} = 2 rI_m$

Calculons le rapport : D'où :
$$\frac{M'_1 M_1}{(M'_1 M_2)\gamma} = \frac{8 L I_m N}{2 r I_m} = 4 \frac{L}{r} N \qquad \frac{L}{r} = \frac{1}{4 N} \times \frac{M'_1 M_1}{((M'_1 M_2)\gamma)}$$

Cette méthode est plus complexe que la précédente parce qu'elle nécessite la valeur de N et la mesure de 2 segments.

9. DUALITE CIRCUIT RLC SERIE — CIRCUIT RLC PARALLELE

Nous voulons montrer que la réponse en intensité d'un circuit RLC série, excité par un générateur de tension, a la même forme que la réponse en tension d'un circuit RLC parallèle excité par un générateur de courant.

9.1 Equations différentielles des circuits RLC série ou parallèle

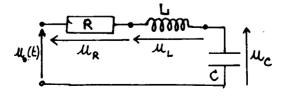


Fig. 17

a) Circuit série (Fig. 17)

$$u_R + u_L + u_C = u_0 (t);$$
 $u_R = R_i;$ $u_L = L^{\frac{1}{2}};$ $u_C = \frac{q}{C}$

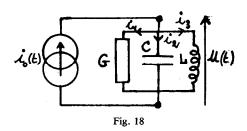
Par dérivation par rapport au temps de la relation entre les tensions on obtient :

$$i' + \frac{R}{L}i + \frac{1}{LC}i = \frac{1}{L}u_0(t)$$
 (1)

b) Circuit parallèle (Fig. 18)

$$i_1 + i_2 + i_3 = i_0(t)$$
; $G = \frac{1}{R}$; $i_1 = Gu(t)$; $i_2 = Cu(t)$;

$$Li_3 = u(t)$$
.



Après la dérivation de la relation entre les intensités, par rapport au temps, on obtient :

$$\ddot{\ddot{u}} + \frac{G}{C}\dot{\ddot{u}} + \frac{u}{LC} = \frac{1}{C}\dot{\dot{i}}_{O}(t) \qquad (2)$$

Les équations différentielles (1) et (2) ont exactement la même forme à condition d'établir les correspondances suivantes :

Faisons quelques expériences qui mettent en évidence la dualité des circuits RLC série — RLC parallèle.

9.2 Circuits RL série - RC parallèle

★ Circuit RL série : u₀(t) est imposé : on observe i(t).

 \star Circuit RC parallèle : $i_0(t)$ est imposé ; on observe u(t).

Les constantes de temps τ_1 et τ_2 de ces 2 circuits sont égales :

$$\tau_1 = \frac{L_1}{R_1} = 8 \times 10^{-4} \text{ s}$$
 = $R_2 C_2 = 8 \times 10^{-4} \text{ s}$.

Lorsque les 2 circuits sont excités à la même fréquence N=150~Hz, on constate que i(t) et u(t) ont la même forme. Les courbes i(t) et u(t) ont toujours la même forme quelle que soit N.

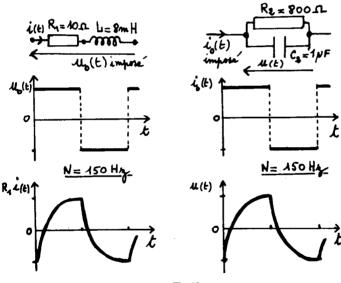


Fig. 19

9.3 Circuits RC série - RL parallèle

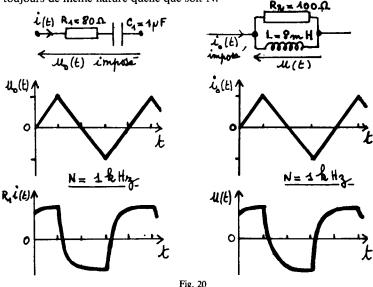
 \star Circuit RC série : $u_0(t)$ est imposé : on observe i(t).

★ Circuit RL parallèle : $i_0(t)$ est imposé ; on observe u(t).

Les constantes de temps τ_1 et τ_2 de ces 2 circuits sont égales :

$$\tau_1 = R_1 C_1 = 8 \times 10^{-5} s$$
 $\tau_2 = \langle \frac{L_2}{R_2} = 8 \times 10^{-5} s.$

Lorsque les circuits sont excités à la même fréquence N=1 kHz, on constate que i(t) et u(t) ont la même forme. Les courbes i(t) et u(t) sont toujours de même nature quelle que soit N.



De même, on pourrait comparer le comportement d'un circuit RLC série, excité par une source de tension, et le comportement d'un circuit RC parallèle excité par une source de courant.

10. REPONSE EN TENSION D'UN CIRCUIT RLC EXCITE PAR UNE SOURCE DE COURANT SINUSOIDAL

10.1 Etude qualitative

Soit le montage de la Fig. 21 ; L_0 et L_1 sont 2 ampoules identiques (6 V - 100 mA).

Source de courant : $R_O=10\,\Omega$; la tension de commande u_O , sinusoïdale, est réglée de manière à obtenir une valeur efficace de 80 mA pour i_O .

Le dipôle étudié, de bornes A et B, comprend une bobine (L,r), une capacité C et une ampoule L_1 .

Faisons varier la fréquence N de i_0 entre 100 Hz et 10 kHz; nous constatons que la puissance lumineuse de L_0 est constante mais que celle de L_1 varie et passe par un minimum pour $N_0 \simeq 5,54$ kHz.

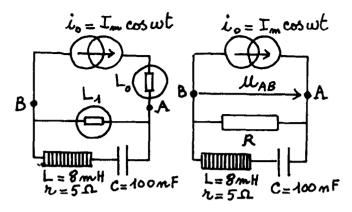


Fig. 21

Fig. 22

Interprétation

L'ampoule L_0 montre que la valeur efficace de i_0 est constante (source de courant) quelle que soit la fréquence. Lorsque la puissance lumineuse de L_1 est minimale nous pouvons affirmer que la valeur efficace de u_{AB} est également minimale.

10.2 Etude quantitative

a) Résultats expérimentaux

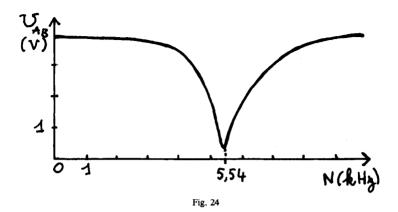
Montage: Fig. 22

 $R = 100 \Omega$

La mesure de u_{AB} pour différentes valeurs de N permet de construire la courbe de réponse du circuit (Fig. 24).

R = 100 A											
N(RHz)	0,1	2	2,5	3	3,5	4	4,5	5			
UAB(V)	3,88	3,83	3,82	3,76	3,64	3,40	2,87	1,08			
N(RH)											
UAB(V)	936	1,48	2,55	3,11	3,63	3,85	3,%				

Fig. 23



Ce circuit constitue un filtre réjecteur lorsqu'il est alimenté par une source de courant.

Cette étude pourrait être complétée par celle de l'influence de R sur la courbe de réponse.

b) Théorie

Posons $i_O = I_m \cos \omega t$ et $u_{AB} = v_m \cos (\omega t + \varphi)$. Négligeons la résistance r de la bobine. La tension complexe \overline{u}_{AB} exprimée en fonction de l'intensité complexe i_O est :

$$\overline{u}_{AB} = \frac{R\overline{i}_0 (1 - LC\omega^2)}{1 - L C\omega^2 + j RC\omega}$$

Posons:

$$\omega_O = \frac{1}{\sqrt{LC}} \qquad Q_O = \frac{L\omega_O}{R} = \ \frac{1}{RC\omega_O} \qquad \text{et } x = \frac{\omega}{\omega_O}$$

$$U_m^2 = \overline{u}_{AB} \cdot \overline{u}_{AB}^*$$

$$U_{m}^{2} = \frac{R^{2}I_{m}^{2} (1 - x^{2})^{2}}{(1 - x^{2})^{2} + \frac{x^{2}}{Q_{0}^{2}}}$$

Pour étudier U_m en fonction de x, posons $X = x^2$ et

$$y = \frac{U_m^2}{R^2 I_m^2}$$
 ; $y = \frac{(X-1)^2}{(X-1)^2 + \frac{X}{Q_0^2}}$

$$\frac{dy}{dX} = \frac{(X-1)(2X^2 - X + 1)}{Q_0 \left[(X-1)^2 + \frac{X}{Q_0^2} \right]^2}$$

 $\frac{dy}{dx}$ s'annule pour X = 1; la valeur minimale de y est 0.

U_m passe donc par un minimum à la fréquence

$$N_O = \frac{1}{2\pi \sqrt{LC}}$$

ce minimum est égal à 0 si la résistance de la bobine est négligeable.

Avec L=8 mH et C=100 nF, on obtient $N_0=5,63$ kHz, valeur proche de celle trouvée expérimentalement, 5,54 kHz.

11. CONCLUSION

De conception très simple, cette source de courant permet de réaliser de nouvelles expériences d'électricité et de montrer que l'étude d'un circuit ne conduit pas aux mêmes résultats selon qu'il est alimenté par une source de courant ou par une source de tension.

12. RENSEIGNEMENTS COMPLEMENTAIRES

Le composant TCA 365 et sa notice technique peuvent être obtenus chez EREL Boutique, 11 bis rue Chaligny 75012 Paris.

Prix approximatif: 42 F.

Le TCA 365 peut être remplacé par le TDB 0791 de Thomson Efcis (mêmes caractéristiques).

ANNEXE

SOURCE DE COURANT AVEC CHARGE ACCROCHEE A LA MASSE

Nous proposons un autre schéma de source de courant qui permet d'alimenter une charge dont l'une des bornes est reliée à la masse.



Pour que la charge soit alimentée à courant constant il faut que $R_3 + R_4 = R_2$; le courant électromoteur i_0 est :

$$i_0 = -\frac{u_0}{R_4} \times \frac{R_2}{R_1}$$

Ce montage ne permet pas de changer facilement le facteur de conversion tension $u_0 \rightarrow$ courant i_0 car, si l'on modifie R_4 , il faut retoucher à R_3 pour conserver $R_3 + R_4 = R_2$; en revanche il évite d'avoir recours à un ampli de différence pour visualiser u_1 .

On peut prendre : $R_1 = 1 \text{ k}\Omega$; $R_2 = 1 \text{ k}\Omega$; $R_4 = 10 \Omega$;

 R_3 : ajustable 10 tours de 1 k Ω .

Réglage:

La charge est un condensateur de quelques microfarads.

La tension u_0 est une tension carrée, alternative, de fréquence 1 kHz. On règle R_3 pour avoir des dents de scie parfaites aux bornes du condensateur ; remarquons qu'il faut $i_0 = \pm 0,4$ A pour faire varier la tension aux bornes d'un condensateur de 10 μ F de 20 V en 0,5 ms.