BUP PRATIQUE - BUP PRATIQUE - BUP PRATIQUE - BUP PRATIQUE

Réalisation d'un suiveur de puissance

par Jean-Philippe MULLER Laboratoire d'électronique Lycée Louis Armand - 68100 Mulhouse

RÉSUMÉ

Réalisation d'un montage amplificateur suiveur pouvant fournir jusqu'à 1 A en sortie.

1. INTÉRÊT DU MONTAGE

Dans un certain nombre de travaux pratiques comme l'étude de la résonance, on peut être gêné par la résistance interne de 50 Ω du générateur basse-fréquence.

Nous proposons la réalisation d'un amplificateur de gain unitaire, de résistance d'entrée très grande et de résistance de sortie presque nulle, se comportant comme un suiveur de tension.

Cette structure a l'avantage par rapport au montage à amplificateur opérationnel de pouvoir fournir en sortie un courant dépassant l'ampère dans la gamme de tensions allant de $-15~\rm V$ à $+15~\rm V$.

Ce suiveur, précédé éventuellement d'un amplificateur de tension à amplificateur opérationnel, permet entre autres applications de :

- transformer un générateur audiofréquence en source de tension,
- réaliser un amplificateur de puissance,
- faire varier la vitesse d'un moteur à courant continu avec un potentiomètre, etc.

2. RÉALISATION

La fonction est réalisée par le circuit intégré EL 2008C disponible entre autres chez Radiospares pour environ 130 F. Il s'agit d'un amplificateur «buffer» 55 MHz 1 A complet en boîtier TO220 convenant parfaitement pour notre application.

BUP PRATIQUE - BUP PRATIQUE - BUP PRATIQUE - BUP PRATIQUE

Le schéma ci-dessous montre qu'il suffit de lui associer quelques composants de découplage et de protection pour réaliser la fonction souhaitée.

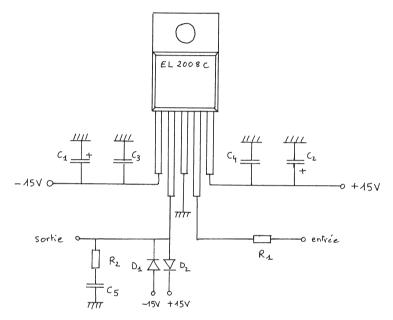


Schéma du suiveur de puissance.

Liste des composants

- Circuit intégré : EL 2008 C.
- $R_1 = 1 k\Omega R_2 = 15 k\Omega.$
- $-C_1 = C_2 = 100 \mu F$ électrochimique ou tantale.
- $C_3 = C_4 = 0.1 \mu F C_5 = 1 nF.$
- $-D_1 = D_2 = 1N4001.$

Les diodes D_1 et D_2 protègent le circuit intégré en conduisant si la tension de sortie sort de l'intervalle + 15 V, – 15 V, ce qui peut être le cas lorsque la charge est inductive.

Le circuit \mathbf{R}_2 , \mathbf{C}_5 assure la stabilité du suiveur lorsque la charge est capacitive.

BUP PRATIQUE - BUP PRATIQUE - BUP PRATIQUE - BUP PRATIQUE

Les condensateurs de découplage C_1 , C_2 , C_3 et C_4 seront placés à proximité du boîtier.

La résistance R_1 protège le circuit en limitant le courant lorsque la tension d'entrée sort de la plage + 15 V, - 15 V.

Le circuit intégré sera muni d'un bon radiateur de quelques dizaines de centimètres carrés.

3. CARACTÉRISTIQUES OBTENUES

- Amplification en tension : $A_v = 0.9995$ soit pratiquement $A_v = 1$.
- Résistance d'entrée : $R_e = 2 M\Omega$.
- Résistance de sortie : $R_s = 0.8 \Omega$.
- Courant maximal en sortie : $I_s = 1.5 \text{ A}$.
- Tension de décalage maximale en sortie : V_{os} = 10 mV.
- Bande passante en petits signaux : B = 55 MHz.
- Slew-rate typique : $S = 2500 \text{ V/}\mu\text{s}$.

Les collègues intéressés par ce montage et qui ne désirent pas le fabriquer eux-mêmes peuvent me contacter par fax au 03 89 06 42 84 ou par mon site Internet :

http://pro.wanadoo.fr/jean-philippe.muller