Utilisation du logiciel EXCEL[®] pour l'exploitation approfondie d'un diffractogramme de rayons X d'une poudre de silicium

par P. COUCHOT, S. VIROT, O. CHEIKH AHMED et R. MERCIER Département Chimie 1^{er} cycle UFR des Sciences et Techniques - 25030 Besançon Cedex

RÉSUMÉ

Utilisation du logiciel EXCEL[®] est utilisé pour calculer les intensités théoriques d'un diagramme radiocristallographique des poudres du silicium. La comparaison avec les intensités mesurées est effectuée par l'étude de la variation du facteur de reliabilité généralisé, en introduisant les corrections suivantes : multiplicité des plans, Lorentz Polarisation, absorption, agitation thermique des atomes.

En prenant en compte toutes ces corrections, le facteur de reliabilité généralisé atteint 1,7 %, pour un facteur d'agitation thermique isotrope des atomes de silicium de 1,9 Å.

1. NIVEAU DU TP

Licence et Maîtrise de Physique, de Chimie Physique ou de Chimie.

2. INTRODUCTION

L'exploitation d'un diagramme de poudre en Travaux Pratiques (niveau Licence ou Maîtrise) se limite souvent aux calculs des distances interréticulaires des raies, de leur indexation, de la détermination des paramètres de maille...

Les calculs des intensités ne sont pratiquement pas abordés car ils sont longs et fastidieux. L'utilisation du logiciel EXCEL[®] permet de pallier cet inconvénient.

La manipulation proposée sur le diagramme de poudre du silicium (de structure diamant) consiste à corriger les intensités mesurées en tenant compte des facteurs : - de multiplicité des plans, - de LORENTZ-POLARISATION,

- d'absorption,

et à comparer à chaque étape les résultats aux valeurs des intensités calculées (calcul des facteurs de reliabilité).

Puis afin d'optimiser le facteur de reliabilité, une correction des intensités calculées est effectuée à partir du facteur de structure, en faisant varier le facteur d'agitation thermique isotrope du silicium.

3. PRÉREQUIS

Ce TP peut se dérouler en quatre heures à condition de maîtriser l'utilisation d'un tableur tel que Excel[®].

Nous supposerons connues les notions de plan réticulaire, de distance interréticulaire d(h, k, l), de maille, d'indices de MILLER h, k, l ainsi que la loi de Bragg :

$$2 d(h, k, l) \sin \theta = \lambda \tag{1}$$

 2θ : Déviation des rayons X diffractés de longueur d'onde λ , par rapport aux rayons X incidents.

Et la formule relative au système cubique :

$$d(h, k, l) = \frac{a}{\sqrt{(h^2 + k^2 + l^2)}}$$
(2)

donnant la distance inter-réticulaire d(h, k, l) d'une famille de plans réticulaires caractérisée par les indices de MILLER h, k, l en fonction de ceux-ci et du paramètre a de la maille cubique.

4. DONNÉES EXPÉRIMENTALES

Le diffractogramme d'une poudre de silicium a été tracé à l'aide d'un diffractomètre de rayons X représenté sur la figure 1. Le tube de rayon X est équipé d'une cathode en cuivre. La raie K_{α} de cet élément (1,5406 Å) est sélectionnée à l'aide d'un monochromateur à lame cristalline courbe. L'incidence des rayons X sur ce cristal est $\theta_m = 14^\circ$.

Figure 1 : Diffractomètre des poudres avec monochromateur à lame cristalline et détecteur CPS 120 (INEL).

La poudre de silicium est dans un capillaire (tube de LINDEMANN) de 0,3 mm de diamètre. Celui-ci tourne sur lui-même suivant un axe de révolution.

Les rayons X diffractés sont focalisés sur un compteur détecteur CPS 120 INEL de rayon de courbure égal à 250 mm, couvrant un domaine angulaire en 2θ de 120°.

La figure 2 représente le diffractogramme X des poudres enregistré dans ces conditions.

Figure 2 : Diffractogramme de rayon X des poudres de silicium.

Au-dessus de chaque raie sont données les déviations 2θ (en degrés et centième de degrés), et les intensités relatives $I_1 = I / I_0$ de chaque raie (exprimées en pourcentage de l'intensité I_0 de la raie la plus intense).

5. QUELQUES NOTIONS THÉORIQUES

5.1. Diffusion des rayons X par les atomes et les ions Diffraction des rayons X par les cristaux

5.1.1. Pouvoir diffusant des atomes et des ions

Le pouvoir de diffusion des rayons X n'est pas le même pour tous les atomes ou ions monoatomiques. Ce pouvoir est lié à la structure électronique de l'atome ou de l'ion considéré ; ainsi les ions Na^+ et Cl^- auront des pouvoirs diffusants différents. Par contre, les ions K^+ et Cl^- auront des pouvoirs diffusants très voisins, car ils se comportent comme des centres diffusants à peu près identiques, car ils sont isoélectroniques.

Le pouvoir diffusant des atomes ou des ions j dans un cristal est une fonction de la déviation 2θ des rayons X diffusés (figure 3a).

Soit \vec{A}_o le vecteur champ électrique des rayons X incidents et \vec{A}_j le vecteur électrique des rayons X diffusés par l'atome ou l'ion *j* suivant la direction 2θ .

Soit \vec{A}_o et \vec{A}_e les vecteurs champ électrique des rayons X incidents et diffusés dans les mêmes conditions par un électron (figure 3b).

Figure 3a

Figure 3b

Figures 3 : Diffusion par un atome et par un électron.

Le facteur de diffusion de l'atome ou de l'ion *j* dans la direction 2θ est égal au rapport :

$$f_j(\theta) = \frac{\vec{A}_j}{\vec{A}_e} \tag{3}$$

Si on admet que les atomes ou les ions ont une densité électronique $\frac{dp}{dv} = \psi_j^2(r)$ qui ne dépend que de la distance au noyau r, ($\psi_j(r)$ fonction d'onde décrivant l'atome ou l'ion *j*) le facteur de diffusion s'écrit :

$$f_{j} = \int_{0}^{\infty} \psi_{j}^{2}(r) \frac{\sin \mu r}{\mu r} dr$$

$$\mu = \frac{4\pi \sin \theta}{\lambda}$$
(4)

Quand
$$\theta = 0$$
, $\frac{\sin \mu r}{\mu r} = 1$

et :
$$f_j = \int_0^\infty \psi_j^2(r) = N_j$$

 N_j étant le numéro atomique de l'atome *j* diffusant, ou le nombre d'électron autour du noyau dans le cas d'un ion monoatomique diffusant.

La figure 4 donne l'allure de la variation du facteur de diffusion de deux ions isoélectroniques : Si⁴⁺et O^{2-} , en fonction de $\frac{\sin \theta}{\lambda}$.

Le maximum de cette variable correspond à $\theta = 90^{\circ}$ (la déviation sera alors égale à 180° et $\frac{\sin \theta}{\lambda}$ sera égal à $\frac{1}{\lambda}$).

Vol. 92 - Juin 1998

avec :

Figure 4 : Variation du facteur de diffusion atomique en fonction de sin θ / λ .

Le tableau 1 donne le facteur de diffusion $f_{si}(0)$ de l'atome de Si en fonction des $\frac{\sin \theta}{\lambda}$ pour la raie $K\alpha$ du cuivre. Le terme (0) indique que le facteur de diffusion n'a subi aucune correction due au facteur d'agitation thermique isotrope.

$\frac{\sin\theta}{\lambda}(\mathring{A}^{-1})$	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,50	0,60	0,70
$f_{si}(0)$	14,00	13,45	12,16	10,79	9,67	8,85	8,22	7,70	7,20	6,24	5,31	4,47

Tableau 1 : Facteur de diffusion (raie $K\alpha$ du cuivre)(en nombre d'électrons).

5.1.2. Facteur de structure

Dans un cristal, les ions ou les atomes ne sont pas isolés, mais se répètent périodiquement. Les rayonnements diffusés pour chaque atome ou ion vont interférer pour donner le diagramme de diffraction. Les intensités des rayonnements diffractés sont plus ou moins fortes.

Dans un système donné (cubique, quadratique, etc.) sans considérer les modes de BRAVAIS possibles, on considère les ions ou les atomes 1, 2, ... *j* constituant le motif. Soient $x_1, y_1, z_1, x_2, y_2, z_2, ... x_j$, y_j, z_j les coordonnées de ces atomes ou ions du motif

dans le référentiel \vec{a} , \vec{b} , \vec{c} (\vec{a} , \vec{b} , \vec{c} sont les vecteurs unitaires construits sur les paramètres de maille). Ces coordonnées appelées coordonnées réduites sont toujours supérieures ou égales à 0 et inférieures à 1.

L'intensité des rayonnements diffractés par un plan h, k, l contenant l'atome ou l'ion j est proportionnelle au produit \overline{F}_j $(h, k, l) \cdot F_j$ (h, k, l).

 F_i (h, k, l) est le facteur de structure de l'atome j. C'est un nombre complexe.

$$F_{j}(h, k, l) = f_{j} \exp \left[i2\pi (hx_{j} + ky_{j} + Iz_{j})\right]$$
(5)

L'intensité des rayons X diffractés par un plan h, k, l contenant tous les atomes ou les ions j du motif est proportionnelle au produit :

$$F_{c}^{2} = \overline{F} (h, k, l) \cdot F (h, k, l) = \left[\sum_{j} f_{j} \cos 2\pi (hx_{j} + ky_{j} + lz_{j}) \right]^{2} + \left[\sum_{j} f_{j} \sin 2\pi (hx_{j} + ky_{j} + lz_{j}) \right]^{2}$$
(6)

Quand la maille cristalline possède un centre d'inversion, l'expression (6) s'écrit :

$$F_{c}^{2} = \overline{F}(h, k, l) \cdot F(h, k, l) = \left[\sum_{j} f_{j} \cos 2\pi (hx_{j} + ky_{j} + lz_{j})\right]^{2}$$
(7)

Le facteur de structure calculé F_c , est proportionnel à la racine carrée de l'intensité des rayons X (intensité calculée) diffractés par un plan h, k, l contenant tous les atomes ou ions j du motif.

5.2. Corrections appliquées aux intensités observées

Pour chacune des raies du diagramme des poudres, les intensités mesurées sont assez éloignées des intensités calculées. Il faut donc apporter plusieurs corrections sur les intensités mesurées. Les premières sont dues à la multiplicité des plans dans le système cubique. Les autres sont liées à l'angle de diffraction 2θ : correction de LORENTZ, correction de polarisation et à l'absorption des rayons X par les cristaux formant la poudre.

5.2.1. Correction de multiplicité

L'intensité d'une raie est proportionnelle au nombre de plans réticulaires équivalents qui possèdent la même distance interréticulaire.

Par exemple, dans le système cubique, les plans d'indices de MILLER 1, 0, 0; 0, 1, 0; 0, 0, 1; $\overline{1}$, 0, 0; 0, $\overline{1}$, 0; 0, 0, $\overline{1}$ ont la même distance interréticulaire. Le nombre M de plans équivalents est donc ici égal à 6.

Le tableau 2 donne les valeurs de M, pour différents jeux d'indices de MILLER h, k, l positifs, dans le système cubique.

Indices h, k, l	1,0,0	1,1,0	1,1,1	2,0,0	2,1,0	2,1,1	2,2,0	2,2,1	2,2,2	3,0,0	3,1,0
M : Nombre de plans équivalents	6	12	8	6	24	24	12	24	8	6	24
Indices h, k, l	3,1,1	3,2,0	3,2,1	3,2,2	3,3,0	3,3,1	4,0,0	4,1,0	4,1,1	4,2,0	4,2,2
M : Nombre de plans équivalents	24	24	48	24	12	24	6	24	24	24	24

Tableau 2 : Nombre de plans équivalents dans le système cubique.

5.2.2. Correction de LORENTZ-POLARISATION

Comme son nom l'indique, cette correction est composée de deux termes différents.

• La correction de polarisation P

Elle est due au fait que les RX incidents subissent une polarisation partielle après la diffraction, ce qui diminue l'intensité diffractée.

Les calculs montrent que pour un rayonnement incident non polarisé, cette correction P est de la forme :

$$P = \frac{1}{2} \left(1 + \cos^2 2\theta \right) \tag{8}$$

Lorsqu'on utilise un monochromateur, à lame cristalline, sur un angle d'incidence des rayons X égal à θ_m , on introduit une correction supplémentaire, due à la polarisation des rayonnements incidents par le monochromateur. Dans ce cas la polarisation *P* devient égal à :

$$P = \frac{1 + \cos^2 2\theta_m \cos^2 2\theta}{1 + \cos^2 2\theta_m} \tag{9}$$

Pour $2\theta_m = 28^\circ$ (condition expérimentale pour ce TP) :

$$P = \frac{1+0.78\cos^2 2\theta}{1.78} \tag{10}$$

Ainsi, pour chaque réflexion d'angle 2θ , l'intensité mesurée est *P* fois l'intensité que l'on aurait sans le phénomène de polarisation (abstraction faite des autres corrections). La correction de polarisation consiste à diviser l'intensité mesurée par *P*.

• La correction de LORENTZ L

Elle est liée au fait que les nœuds du réseau réciproque, assimilés à des sphères, mettent des temps différents pour traverser la sphère d'Ewald.

Ces différences dans le temps de traversée, ont une influence sur les intensités mesurées. La correction de LORENTZ L consiste à ramener tous les nœuds h, k, l au même temps de traversée. Elle a pour expression, dans le cas de la méthode des poudres en capillaires de LINDEMANN :

$$L = \frac{2}{\sin \theta \sin 2\theta} \tag{11}$$

En pratique les deux corrections de LORENTZ et de polarisation sont toujours associées. On parle alors de correction de LORENTZ-POLARISATION (LP) et on utilise le produit des deux corrections.

Dans notre cas, le facteur *LP* s'écrit selon l'expression (12) car le monochromateur est à lame cristalline courbe et les échantillons ont été étudiés par la méthode des poudres en tube capillaire de LINDEMANN.

$$LP = 1,12 \frac{1+0,78\cos^2 2\theta}{\sin \theta \sin 2\theta}$$
(12)

La correction LORENTZ-POLARISATION consiste à diviser l'intensité observée par LP.

5.2.3. Correction d'absorption

L'intensité des rayons X diminue, après traversée d'un cristal suivant la loi de BEER-LAMBERT :

$$I = I_0 \exp\left[-\mu l\right] \tag{13}$$

 μ : coefficient d'absorption linéaire (en cm⁻¹)

l : longueur traversée (en cm)

Pour un rayonnement diffracté, une fraction de l'intensité incidente I_{0} , notée αI_0 ($0 < \alpha < 1$), est diffractée. Elle est absorbée le long de son trajet dans le cristal. Le trajet est variable selon la partie du cristal considérée. Il se décompose en deux étapes : l'un avant et l'autre après la diffraction, soit respectivement l_1 et l_2 (figure 5).

Figure 5 : Absorption de rayon X par un cristal.

L'intensité
$$\alpha I_{0}$$
, après traversée de l_1 , diffraction et traversée de l_2 devient :
 $\alpha I_0 \exp \left[-\mu (l_1 + l_2)\right]$ (14)

On intègre sur l'ensemble du volume v du cristal (qui doit baigner entièrement dans les rayons X).

Le rapport des intensités diffractées, avec et sans absorption est :

$$T = \frac{\int \alpha I_0 \exp\left[-\mu (l_1 + l_2)\right] dv}{\int v \int \alpha I_0 dv} = \frac{1}{v} \int v \exp\left[-\mu (l_1 + l_2)\right] dv$$
(15)

T est appelé facteur de transmission.

Dans le diagramme des poudres en tube capillaire de LINDEMANN, la section du cristal est circulaire, de rayon R (Rayon du capillaire), et d'aire A, somme des aires élémentaires A_i ($A = \Sigma A_i$).

$$T = \frac{1}{A^*} = \frac{1}{A} \sum_{i} \exp\left[-\mu \left(l_1 + l_2\right)\right] A_i = \frac{1}{\pi R^2} \sum_{i} \exp\left[-\mu a_i R\right] A_i$$
(16)

avec :

$$l_1 + l_2 = a_i R$$

A* est le facteur d'absorption cylindrique.

Utilisation du logiciel Excel® ...

La relation précédente montre que le facteur $A^* = T^{-1}$ dépend pour une valeur de μR donnée de l'angle de diffraction θ , qui est responsable de la variation des a_i .

Donc pour chaque angle de diffraction θ , on doit déterminer le facteur A^* . Ceci est possible grâce aux calculs de W.L. BLOND dans *«International Tables for X Rays Cristallography»*, volume II, où sont donnés, pour un μR donné, et un angle θ donné, les facteurs A^* correspondants (voir sur le tableau 3 les valeurs nécessaires en TP).

θ μ R	0 °	5°	10 °	15°	20 °	25°	30 °	35°	40 °
2,0	21,3	20,9	19,8	18,2	16,5	14,8	13,3	12,0	10,9
2,1	24,2	23,7	22,3	20,3	18,2	16,2	14,5	12,9	11,7
2,2	27,5	26,9	25,1	22,6	20,1	17,7	15,7	13,9	12,5
2,3	31,2	30,4	28,1	25,1	22,0	19,3	16,9	14,9	13,3
2,4	35,3	34,2	31,4	27,7	24,1	20,9	18,2	16,0	14,2
θ μ R	50 °	55°	60°	65°	70 °	75°	80 °	85°	90°
θ μ <i>R</i> 2,0	50 ° 7,43	55 ° 6,97	60 ° 6,59	65 ° 6,26	70 ° 5,99	75 ° 5,78	80 ° 5,63	85 ° 5,54	90 ° 5,50
θ μR 2,0 2,1	50 ° 7,43 7,89	55 ° 6,97 7,38	60 ° 6,59 6,95	65 ° 6,26 6,59	70 ° 5,99 6,30	75 ° 5,78 6,07	80 ° 5,63 5,90	85 ° 5,54 5,80	90 ° 5,50 5,76
$\begin{array}{c} \theta \\ \mu R \\ \hline 2,0 \\ 2,1 \\ \hline 2,2 \end{array}$	50 ° 7,43 7,89 8,36	55 ° 6,97 7,38 7,80	60° 6,59 6,95 7,33	65 ° 6,26 6,59 6,93	70 ° 5,99 6,30 6,61	75 ° 5,78 6,07 6,36	80° 5,63 5,90 6,17	85° 5,54 5,80 6,06	90° 5,50 5,76 6,02
$\begin{array}{c} \theta \\ \mu R \\ \hline 2,0 \\ \hline 2,1 \\ \hline 2,2 \\ \hline 2,3 \end{array}$	50° 7,43 7,89 8,36 8,84	55° 6,97 7,38 7,80 8,22	60° 6,59 6,95 7,33 7,70	65° 6,26 6,59 6,93 7,27	70° 5,99 6,30 6,61 6,92	75° 5,78 6,07 6,36 6,64	80° 5,63 5,90 6,17 6,45	85° 5,54 5,80 6,06 6,32	90° 5,50 5,76 6,02 6,28

Tableau 3 : Facteur d'absorption A^* en fonction de θ pour différentes valeurs de μR (R = rayon de tube de LINDEMANN).

Ainsi par double interpolation linéaire sur les valeurs de μR et de θ , on peut déterminer les facteurs d'absorption A^* correspondants aux angles considérés.

La correction d'absorption consiste donc à multiplier l'intensité mesurée par le facteur *A**. On obtient une intensité diffractée naturellement plus élevée que l'intensité mesurée...

Exemple de calcul du produit μR

Pour faire ce calcul, on détermine d'abord le coefficient d'absorption linéaire $\mu.$ Il est fonction :

– des différents coefficients d'absorption massique μ_i / ρ_i des éléments chimiques *i* constituant le cristal (International Tables for X rays Cristallography, volume II),

- des masses molaires du cristal et de celle de ses constituants,
- de la masse volumique ρ du cristal.

Exemple de détermination de μR pour un cristal de ZnO :

$$M_{ZnO} = 81 \text{ g.mol}^{-1}$$
; $M_{Zn} = 65 \text{ g.mol}^{-1}$; $M_O = 16 \text{ g.mol}^{-1}$;
 $\rho_{ZnO} = 5{,}61 \text{ g.cm}^{-3}$

R = 0.015 cm = 150 μ m = rayon du tube capillaire de LINDEMANN

	$ \begin{array}{c} \mu / \rho \ (cm^2 \ g^{-1}) \\ (Cu \ K\alpha) \end{array} $	% massique	μ/ρ
Zn	60,3	$\frac{65}{81} = 80,2 \%$	$0,802 \times 60,3 = 48,4$
0	11,5	$\frac{16}{81} = 19,8 \%$	$0,198 \times 11,5 = 2,3$
12	·	·	$\Sigma = 50,7$

$$\mu = \frac{\mu}{\rho} \times \rho_{ZnO} = 50,7 \times 5,61 = 284 \ cm^{-1}$$

$$\mu R = 284 \times 0,015 \implies \mu R = 4,26$$

(nombre sans dimension)

5.3. Correction apportée au facteur de structure et aux intensités calculées

Le facteur de structure calculé F_c (relation 6) est fonction des facteurs de diffusion f_i des atomes ou des ions *j* dans le cristal.

Dans ce facteur de diffusion, il est possible d'apporter un terme correctif, qui tient compte de l'agitation thermique des particules j autour de leur position d'équilibre.

En considérant que l'agitation est isotrope, le facteur de diffusion corrigé $f_i(B)$ à introduire dans le facteur de structure est :

$$f_{i}(B) = f_{i}(0) f_{T}(B)$$
(17)

 $f_T(B)$: facteur d'agitation thermique isotrope de la particule j.

 $f_i(0)$: facteur de diffusion de l'atome ou de l'ion j sans aucune correction du facteur d'agitation thermique isotrope.

$$f_T = \exp\left[-B \frac{\sin^2 \theta}{\lambda^2}\right] \tag{18}$$

$$B = 8 \Pi^2 \left\langle u^2 \right\rangle \tag{19}$$

où $\langle u^2 \rangle$ est l'amplitude quadratique moyenne d'oscillation de l'atome. Elle croît quand la température augmente.

B est appelé facteur de température. B a les dimensions d'une aire.

On peut estimer qu'un facteur *B* réaliste est $< 2\text{\AA}^2$ pour un élément mi-lourd (Z > 10) et de 2\AA^2 à 4\AA^2 pour des atomes légers (ceci à température ambiante). Cette correction a pour effet d'abaisser le facteur de structure calculé F_c à mesure que θ augmente.

Le tableau 4 donne les valeurs de $f_T(B)$ pour différentes valeurs de B (en Å²) et de $\frac{\sin \theta}{\lambda}$ (en Å⁻¹).

5.4. Facteur de reliabilité

A partir des intensités mesurées expérimentalement, on détermine pour chaque raie du diagramme des poudres le facteur de structure observé F_0 qui est la racine carrée de l'intensité I_n .

$$F_0 = \sqrt{I_n} \tag{20}$$

Comme valeurs de l'intensité, on peut prendre :

- l'intensité relative $I_1 = I / I_0$ (n = 1) lue sur le spectre enregistré (aucune correction),
- l'intensité corrigée du nombre de plans équivalents M :

$$I_2 = \frac{I_1}{M}$$
 (n = 2) (21)

- l'intensité corrigée du nombre de plans équivalents M et du terme de LP :

$$I_3 = \frac{I_1}{M \times LP} \quad (n = 3) \tag{22}$$

P. COUCHOT ...

BULLETIN DE L'UNION DES PHYSICIENS

$\frac{\sin\theta}{\lambda}$	B=0,5 Å ²	B=1,0 Å ²	B=1,4 Å ²	B=1,6 Å ²	B=1,9 Å ²	B=2,1 Å ²	B=2,4 Å ²	B=2,7 Å ²	B=3,0 Å ²
0,01	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0,02	1,000	1,000	0,999	0,999	0,999	0,999	0,999	0,999	0,999
0,03	1,000	0,999	0,999	0,999	0,998	0,998	0,998	0,998	0,997
0,04	0,999	0,999	0,998	0,997	0,997	0,997	0,996	0,996	0,995
0,05	0,999	0,998	0,997	0,996	0,995	0,995	0,994	0,993	0,993
0,06	0,998	0,996	0,995	0,994	0,993	0,992	0,991	0,990	0,989
0,07	0,998	0,995	0,993	0,992	0,991	0,990	0,988	0,987	0,985
0,08	0,997	0,994	0,991	0,990	0,988	0,987	0,985	0,983	0,981
0,09	0,996	0,992	0,989	0,987	0,985	0,983	0,981	0,978	0,976
0,10	0,995	0,990	0,986	0,984	0,981	0,979	0,976	0,973	0,970
0,11	0,994	0,988	0,983	0,981	0,977	0,975	0,971	0,968	0,964
0,12	0,993	0,986	0,980	0,977	0,973	0,970	0,966	0,962	0,958
0,13	0,992	0,983	0,977	0,973	0,968	0,965	0,960	0,955	0,951
0,14	0,990	0,981	0,973	0,969	0,963	0,960	0,954	0,948	0,943
0,15	0,989	0,978	0,969	0,965	0,958	0,954	0,947	0,941	0,935
0,16	0,987	0,975	0,965	0,960	0,953	0,948	0,940	0,933	0,926
0,17	0,986	0,972	0,960	0,955	0,947	0,941	0,933	0,925	0,917
0,18	0,984	0,968	0,956	0,949	0,940	0,934	0,925	0,916	0,907
0,19	0,982	0,965	0,951	0,944	0,934	0,927	0,917	0,907	0,897
0,20	0,980	0,961	0,946	0,938	0,927	0,919	0,908	0,898	0,887
0,21	0,978	0,957	0,940	0,932	0,920	0,912	0,900	0,888	0,876
0,22	0,976	0,953	0,934	0,925	0,912	0,903	0,890	0,877	0,865
0,23	0,974	0,948	0,929	0,919	0,904	0,895	0,881	0,867	0,853
0,24	0,972	0,944	0,923	0,912	0,896	0,886	0,871	0,856	0,841
0,25	0,969	0,939	0,916	0,905	0,888	0,877	0,861	0,845	0,829
0,26	0,967	0,935	0,910	0,897	0,879	0,868	0,850	0,833	0,816
0,27	0,964	0,930	0,903	0,890	0,871	0,858	0,839	0,821	0,804
0,28	0,962	0,925	0,896	0,882	0,862	0,848	0,828	0,809	0,790
0,29	0,959	0,919	0,889	0,874	0,852	0,838	0,817	0,797	0,777
0,30	0,956	0,914	0,882	0,866	0,843	0,828	0,806	0,784	0,763
0,31	0,953	0,908	0,874	0,857	0,833	0,817	0,794	0,771	0,750
0,32	0,950	0,903	0,866	0,849	0,823	0,807	0,782	0,758	0,736
0,33	0,947	0,897	0,859	0,840	0,813	0,796	0,770	0,745	0,721
0,34	0,944	0,891	0,851	0,831	0,803	0,784	0,758	0,732	0,707
0,35	0,941	0,885	0,842	0,822	0,792	0,773	0,745	0,718	0,692
0,36	0,937	0,878	0,834	0,813	0,782	0,762	0,733	0,705	0,678
0,37	0,934	0,872	0,826	0,803	0,771	0,750	0720	0,691	0,663
0,38	0,930	0,866	0,817	0,794	0,760	0,738	0,707	0,677	0,648
0,39	0,927	0,859	0,808	0,784	0,749	0,727	0,694	0,663	0,634
0,40	0,923	0,852	0,799	0,774	0,738	0,715	0,681	0,649	0,619
0,41	0,919	0,845	0,790	0,764	0,727	0,703	0,668	0,635	0,604
0,42	0,916	0,838	0,781	0,754	0,715	0,690	0,655	0,621	0,589
0,43	0,912	0,831	0,772	0,744	0,704	0,678	0,642	0,607	0,574
0,44	0,908	0,824	0,763	0,734	0,692	0,666	0,628	0,593	0,559
0,45	0,904	0,817	0,753	0,723	0,681	0,654	0,615	0,579	0,545
0,46	0,900	0,809	0,744	0,713	0,669	0,641	0,602	0,565	0,530
0,47	0,895	0,802	0,734	0,702	0,657	0,629	0,589	0,551	0,515
0,48	0,891	0,794	0,724	0,692	0,645	0,616	0,575	0,537	0,501
0,49	0,887	0,787	0,715	0,681	0,634	0,604	0,562	0,523	0,487
0,50	0,882	0,779	0,705	0,670	0,622	0,592	0,549	0,509	0,472

Tableau 4 : Facteur d'agitation isotrope $f_T(B)$ en fonction de sin θ / λ (en Å⁻¹) pour différentes valeurs de B (en Å⁻²).

Utilisation du logiciel Excel[®]...

BUP n° 805

- l'intensité corrigée du nombre de plans équivalents M, du terme de LP et du terme d'absorption A^* :

$$I_4 = \frac{I_1}{N \times LP} \times A^* \quad (n = 4)$$
⁽²³⁾

Les valeurs de ${\cal F}_0$ seront différentes suivant les corrections effectuées sur l'intensité.

A partir de la relation (6), en introduisant le cas échéant des corrections des facteurs d'agitation thermique isotrope $f_T(B)$, on trouve le facteur de structure calculé :

$$F_c = \sqrt{F(h, k, l)} \times F(h, k, l).$$

On peut calculer pour chaque raie du diagramme de poudre :

$$\left|F_0 - F_c\right| \tag{24}$$

et en déduire le facteur de reliabilité relatif à cette raie :

$$R = \frac{|F_0 - F_c|}{F_0}$$
(25)

En effectuant la somme suivant l'ensemble des raies :

$$\Delta = \sum \left| F_0 - F_c \right| \tag{26}$$

on en déduit le facteur de reliabilité généralisé R_g qui s'écrit :

$$R_{g} = \frac{\Delta}{\sum F_{0}} = \frac{\sum |F_{0} - F_{c}|}{\sum F_{0}}$$
(27)

La détermination d'une structure (position des particules dans un cristal) est qualifiée de :

- excellente si $R_g \leq 0,04$,
- très bonne si $0.04 \le R_g \le 0.06$,
- bonne si $0,06 \le R_g \le 0,10$.

Remarque très importante

Les intensités des pics diffractées dans un diagramme des poudres, sont fonction de l'intensité des rayons X incidents. Il n'y a donc aucune raison a priori pour que les facteurs de structure observés F_0 soient très proches des facteurs de structure calculés F_c .

Par conséquent, pour remédier à cet inconvénient, il faut donc :

• <u>Dans la première partie du TP</u>, calibrer F_0 obtenus à partir des intensités mesurées (corrigées ou non : I_1, I_2, I_3, I_4), de manière à les ramener à la même échelle que les F_c .

Le facteur multiplicatif Y_n à appliquer aux F_0 , afin qu'ils soient calibrés à la même échelle que les F_c est :

$$Y_n = \frac{S_c}{S_n} \tag{28}$$

Avec S_c , la somme des F_c (corrigés ou non d'un facteur d'agitation thermique) relatifs à chaque raie du diagramme des poudres :

$$S_c = \Sigma F_c = \Sigma \sqrt{\overline{F}(h, k, l) \times F(h, k, l)}$$
(29)

 S_n étant la somme de toutes les racines carrées des intensités mesurées sur chaque raie du diagramme de poudre (corrigées ou non, normalisées à 100 ou non) :

$$S_n = \sum \sqrt{I_n}$$
(30)

• Dans la deuxième partie du TP, les F_c sont corrigés par l'introduction du facteur d'agitation thermique isotrope.

Soit $F'_{c}(B)$ les nouveaux facteurs de structure calculés.

Le facteur de proportionnalité Y(B) à appliquer aux facteurs $F'_c(B)$ pour les calibrer sur les derniers facteurs de structure observés F_0 (après toutes les corrections) est :

$$Y(B) = \frac{\sum F_0}{\sum F'_c(B)}$$
(31)

6. STRUCTURE DU SILICIUM

Toutes ces données théoriques vont être exploitées sur le diagramme des poudres du silicium. Ce corps pur simple cristallise dans le système cubique (groupe spatial Fd3m), et a la même structure que le diamant (figure 6). Les siliciums sont localisés aux sommets, aux milieux des faces d'une maille cubique, et occupent une cavité tétraédrique sur deux.

Figure 6 : Structure du silicium.

Les coordonnées réduites des huit atomes de silicium sont les suivantes :

Telle qu'elle est représentée, la maille ne possède pas de centre d'inversion.

7. PREMIÈRE ÉTAPE DU TP

Calcul des distances interréticulaires à partir des raies du diagramme de poudre (figure 2)

Sachant que $\lambda = 1,5406$ Å, le calcul des distances interréticulaires d(h, k, l) est réalisé à partir de la loi de Bragg (1) et des valeurs de 2θ données sur le diffractogramme (colonne A B C D du tableau 5).

A	В	С	D	Е	F	G
2 <i>θ</i> (en °)	θ (en °)	d(h, k, l) «lues» (Å)	$I_1 = I / I_0$	п	h, k, l	d(h, k, l) «calculées» (Å)
28,190	14,195	3,141	100	3	1,1,1	3,140
47,242	23,621	1,922	71,5	8	2,2,0	1,923
56,040	28,020	1,6396	44,9	11	3,1,1	1,6397
69,023	34,511	1,3595	12,2	16	4,0,0	1,3596
76,271	38,135	1,2474	20,2	19	3,3,1	1,2476
87,877	43,938	1,1100	27,7	24	4,2,2	1,1100
94,785	47,392	1,0466	14,9	27	5,1,1-3,3,3	1,0466

 $a_m = 5,43832 \text{ Å}$

Tableau 5 : Indexation des raies du diagramme des poudres de silicium.

8. DEUXIÈME ÉTAPE DU TP

Détermination des indices de MILLER des raies observées et du type de maille cubique du silicium (réseau de Bravais)

En supposant que la substance cristallise dans le système cubique, la formule (2) donnant les distances interréticulaires en fonction des paramètres de maille et des indices de MILLER, est utilisée sur une autre forme :

$$\frac{a^2}{d^2(h,k,l)} = h^2 + k^2 + l^2 = n$$
(32)

n étant la somme de carrés de trois nombres entiers.

On attribue, a priori, à la raie de plus grande distance interréticulaire les indices 1,0,0 (n = 1). L'application de la formule (2) conduit à :

$$a = \frac{d(1, 0, 0)}{\sqrt{h^2 + k^2 + l^2}} = 3,141 \text{ Å}$$

D'après la relation (32), si l'indexation de cette première raie est bonne, le carré du paramètre de maille a trouvé précédemment divisé par le carré de la distance interréticulaire de la seconde raie, doit être très proche de la somme des carrés de trois nombres entiers.

Dans le cas présent pour la seconde raie, avec d = 1,922 Å nous obtenons :

$$\frac{a^2}{d^2(h, k, l)} = \left(\frac{3,141}{1,922}\right)^2 = 2,67$$

rapport assez éloigné de la somme n des carrés de trois nombres entiers. Donc la première raie de plus grande distance interréticulaire est mal indexée.

Si on attribue à celle-ci les indices 1, 1, 0, la valeur de *a* correspondante est égale à 4,442 Å. Pour la deuxième raie on a :

$$\frac{a^2}{d^2(h, k, l)} = \left(\frac{4,442}{1,922}\right)^2 = 5,34$$

rapport assez éloigné d'une valeur de *n* entière. Donc la première raie est encore mal indexée.

En lui donnant les indices 1, 1, 1, on obtient une valeur de a = 5,440 Å. Et pour la deuxième raie :

$$\frac{a^2}{d^2(h, k, l)} = \left(\frac{5,44}{1,922}\right)^2 = 8,01$$

valeur très proche d'une valeur de n correspondant aux indices de MILLER 2, 2, 0.

De même pour la troisième raie :

$$\frac{a^2}{d^2(h, k, l)} = \left(\frac{5,440}{1,6396}\right)^2 = 11,01$$

valeur très proche d'une valeur de n correspondant aux indices 3, 1, 1, et ainsi de suite...

Les valeurs de n sont données dans la colonne E du tableau 5, et les valeurs de h, k, l correspondantes dans la colonne F (le jeu d'indices choisi est celui avec tous les entiers positifs).

Pour chaque raie, seuls les indices de même parité apparaissent, ce qui est une caractéristique du réseau cubique à faces centrées.

Il manque cependant les raies d'indices 2, 0, 0 (n = 4) d'indices 2, 2, 2 (n = 12) d'indices 4, 2, 0 (n = 20)

Cette observation sera confirmée plus tard par le calcul des facteurs de structure dans le cas du silicium.

Les valeurs des distances interréticulaires correspondant aux grands angles sont les plus précises. Les valeurs les plus précises de a sont donc celles obtenues à partir des deux valeurs de d(4, 2, 2) = 1,1100 Å (n = 24) et d(5, 1, 1) = 1,0466 Å (n = 27).

Soit : $a_1 = 1,1100 \times \sqrt{24} = 5,43835 \text{ Å}$

et :

$$a_2 = 1.0466 \times \sqrt{27} = 5.43829 \text{ Å}$$

Soit une valeur moyenne de a : $\left(a_m = \frac{a_1 + a_2}{2} = 5,43832 \text{ Å}\right)$ qui sert à recalculer les

distances interréticulaires d(h, k, l) «calculées» (colonne G du tableau 5). La correspondance avec les distances interréticulaires d «lues» (colonne C tableau 5) est excellente.

La masse volumique du silicium est égal à $\rho_{Si} = 2,33 \text{ g. } \text{cm}^{-3}$.

La masse molaire du silicium est $M_{Si} = 28 \text{ g. mol}^{-1}$.

On en déduit le nombre d'atome de silicium par maille :

$$n_{si} = \frac{N \ a^3 \ \rho_{si}}{M_{si}} = \frac{6.02 \times 10^{23} \times (5.438)^3 \times 10^{-30} \times 2.33 \times 10^3}{28 \times 10^{-3}} = 8.05 \ \# \ 8$$

Ce résultat est attendu quand on connaît la structure (figure 5) et confirme la bonne indexation des raies du diagramme de poudre.

Utilisation du logiciel Excel® ...

9. TROISIÈME ÉTAPE DU TP

Étude des intensités

Pour faire cette étude, et voir l'influence du nombre de plans équivalents, du facteur de LORENTZ-POLARISATION et d'absorption sur le facteur de structure observé, nous prendrons a priori une valeur du facteur d'agitation isotrope $f_T(1,4)$ correspondant au facteur de température B = 1,4 Å².

Une fois toutes ces corrections faites, nous étudierons l'influence spécifique du facteur d'agitation isotrope sur le facteur de structure calculé de façon à minimiser les écarts entre les facteurs de structure observés et calculés (c'est-à-dire à trouver la valeur minimale du facteur de reliabilité généralisé R_p).

9.1. Calcul des facteurs de structure et des facteurs de reliabilité sans aucune correction

Le travail consiste à remplir le tableau 6.

A1	B1	С	D1	E1	F1	G1	H1
θ	sinθ/λ	h,k,l	f _{Si} (0)	f _T (1,4)	f _{Si} (1,4)	x	$\overline{F}(h,k,l) \times F(h,k,l)$
14,195	0,159	1,1,1	10,590	0,965	10,219	32	3341,925
23,621	0,260	2,2,0	8,720	0,910	7,935	64	4029,914
28,020	0,305	3,1,1	8,170	0,878	7,173	32	1646,581
34,511	0,368	4,0,0	7,530	0,828	6,235	64	2481,283
38,135	0,400	3,3,1	7,200	0,799	5,753	32	1059,031
43,938	0,450	4,2,2	6,720	0,753	5,060	64	1638,734
47,392	0,478	5,1,1-3,3,3	6,460	0,727	4,696	64	1407,677

n	K1	L1	M1	N1	O1	R1
F _c (1,4)	$\mathbf{I}_1 = \mathbf{I} / \mathbf{I}_0$	$\sqrt{I_1}$	$Y_1 = \frac{\sum F_c(1,4)}{\sum \sqrt{I_1}}$	$F_0 = Y_1 \sqrt{I_1}$	$ F_{c}(1,4) - F_{0} $	$R_1 = \frac{\left F_c(1,4) - F_0\right }{F_0}$
57,809	100,000	10,000	7,624	76,236	18,426	0,242
63,482	71,500	8,456	7,624	64,463	0,981	0,015
40,578	44,900	6,701	7,624	51,084	10,505	0,206
49,812	12,200	3,493	7,624	26,628	23,185	0,871
32,543	20,200	4,494	7,624	34,264	1,721	0,050
40,481	27,700	5,263	7,624	40,123	0,358	0,009
37,519	14,900	3,860	7,624	29,427	8,092	0,275
$\sum_{=322,225} F_{c}(1,4)$		$\sum_{=42,267} \sqrt{I_1}$		$\sum_{=322,225} F_0$	$\sum_{\substack{ F_{c}(1,4) - F_{0} \\ = 63,268}} F_{c}(1,4) - F_{0} $	$R_{g1} = \frac{\sum F_{c}(1,4) - F_{0} }{\sum F_{0}}$ =0.196

Tableau 6 : Sans correction.

En ce qui concerne les colonnes A1, B1, C1, le travail est évident.

Pour remplir les colonnes D1 et E1 c'est-à-dire pour déterminer respectivement le facteur de diffusion $f_{si}(0)$ et le facteur d'agitation isotrope $f_T(1,4)$ avec B = 1,4 Å², on utilise les tableaux 1 et 4 en faisant les interpolations linéaires nécessaires.

La colonne F1 donne le facteur de diffusion $f_{Si}(1,4)$ (pour B = 1,4 Å²).

$$f_{si}(1,4) = f_{si}(0) \times f_T(1,4)$$

c'est-à-dire colonne F1 = colonne D1 \times colonne E1.

La colonne G1 donne le facteur X qui multiplié par le carré du facteur de diffusion du silicium conduit au produit $\overline{F}(h, k, l) \cdot F(h, k, l) = F_c^2$. C'est un nombre qui dépend des indices de MILLER *h*, *k* et *l*.

Par exemple pour h = 1, k = 1, l = 1 d'après la formule du facteur de structure (6) :

$$\overline{F}(1, 1, 1) \times F(1, 1, 1) = 32 f_{si}^{2}$$
 X = 32

pour h = 2, K = 2, l = 0:

$$\overline{F}(2, 2, 0) \times F(2, 2, 0) = 64 f_{si}^2$$
 X = 64

On remarque que :

- pour les indices de MILLER pairs X = 64,
- pour les indices de MILLER impairs X =32.

Remarque :

Pour h = 2, k = 0, l = 0; h = 2, k = 2, l = 2 et h = 4, k = 2, l = 0 on trouve, par le calcul en appliquant la formule (6), une valeur du facteur de structure nulle (bien que les indices de MILLER soient pairs).

Ceci explique bien l'absence des raies correspondant à ces trois jeux d'indices dans le diagramme des poudres du silicium.

La colonne H1 donnant le produit $\overline{F}(h, k, l) \times F(h, k, l)$ est obtenue en multipliant le résultat de la colonne G par le carré des valeurs de $f_{si}(1,4)$. La colonne J1 donne le facteur de structure $F_c(1,4)$ calculé avec le facteur d'agitation isotrope $f_{si}(1,4)$ correspondant à B = 1,4 Å² $\left(F_c(1,4) = \sqrt{\overline{F}(h, k, l)} \times F(h, k, l)\right)$ (colonne J1 = $\sqrt{\text{colonne H1}}$).

La colonne K1 reporte les valeurs des intensités relatives $I_1 = I / I_0$ sans aucune correction.

La colonne L1 donne la racine carrée $\sqrt{I_1}$ des intensités I_1 . La somme $\sum \sqrt{I_1}$ relative à toutes les raies est égale à 42,267, tandis que la somme $\sum F_c(1,4)$ des facteurs de structures calculés est égale à 322,225. Le facteur multiplicatif de $\sqrt{I_1}$ pour calibrer cette valeur à $F_c(1,4)$ sera égale à 7,624.

$$Y_1 = \frac{\Sigma F_c(1,4)}{\Sigma \sqrt{I_1}} = \frac{322,225}{42,267} = 7,624$$
 (colonne M1)

Si on multiplie $\sqrt{I_1}$ par Y_1 , on trouve les facteurs F_0 calibrés (colonne N1). La calibration est bonne car $\Sigma F_0 = \Sigma F_c(1,4) = 322,225$.

La colonne P1 donne la valeur de $|F_c(1,4) - F_0|$ pour chaque raie et la colonne R1 les facteurs de reliabilité R_1 relatif à chaque raie $\left(R_1 = \frac{|F_c(1,4) - F_0|}{F_0}\right)$

Le facteur de reliabilité généralisé sera égale à $R_{g1} = \frac{\Sigma \left|F_c(1,4) - F_0\right|}{\Sigma F_0} = 0,196$ soit 19,6 %. Les corrections s'imposent d'elles-mêmes.

9.2. Corrections à apporter aux intensités mesurées et aux facteurs de structure observés

Les corrections seront commentées dans l'ordre de leur traitement.

A2	B2	C2	D2	E2	F2
h,k,l	М	I ₁	$I_2 = \frac{I_1}{M}$	$\sqrt{I_2}$	F _c (1,4)
1,1,1	8	100	12,500	3,536	57,809
2,2,0	12	71,5	5,958	2,441	63,482
3,1,1	24	44,9	1,871	1,368	40,578
4,0,0	6	12,2	2,033	1,426	49,812
3,3,1	24	20,2	0,842	0,917	32,543
4,2,2	24	27,7	1,154	1,074	40,481
5,1,1-3,3,3	16	14,9	0,931	0,965	37,519
				$\sum \sqrt{I_2}$	$\sum_{-322} F_{c}(1,4)$
				=11,727	=322,225

9.2.1. Corrections dues à la multiplicité des plans (tableau 7)

G2	H2	J2	R2
$Y_2 = \frac{\sum F_c(1,4)}{\sum \sqrt{I_2}}$	$F_0 = Y_2 \sqrt{I_2}$	$ F_{c}(1,4) - F_{0} $	$R_2 = \frac{\left F_c(1,4) - F_0\right }{F_0}$
27,477	97,146	39,337	0,405
27,477	67,071	3,589	0,054
27,477	37,583	2,995	0,080
27,477	39,181	10,631	0,271
27,477	25,208	7,335	0,291
27,477	29,519	10,962	0,371
27,477	26,516	11,003	0,415
	$\sum_{=322,225} F_0$	$\sum_{\substack{ F_{c}(1,4) - F_{0} \\ = 85,853}} F_{c}(1,4) - F_{0} $	$R_{g_2} = \frac{\sum F_c(1,4) - F_0 }{\sum F_0}$ =0,266

Tableau 7	7 :	Correction	de	multiplicité.
-----------	-----	------------	----	---------------

Le travail consiste, à corriger l'intensité mesurée en la divisant par le nombre de plans équivalents qui correspondent au jeu d'indices h, k, l d'une raie du diagramme de poudre de Si.

Soit *M* le nombre de plans équivalents (colonne B2). L'intensité corrigée sera appelée I_2 (colonne D2).

Remarquons à ce sujet que pour l'ensemble des plans 5, 1, 1 et 3, 3, 3 de même distance interréticulaire, le nombre de plans équivalent a été trouvé égal à 16, alors que pour les plans 5, 1, 1, il est égal à 24 et pour les plans 3, 3, 3 à 8.

En effet pour les plans 5, 1, 1 :

$$I'_1 = 24 \times 32 \ f^2_{si}(1,4) = 24 \ \frac{I_2}{2}$$

et pour les plans 3, 3, 3 :

$$I''_1 = 8 \times 32 \ f^2_{si}(1,4) = 8\frac{I_2}{2}$$

M = 16

Soit : $I_1 = I'_1 + I''_1 = (12+4) I_2 = M I_2$

et :

Remplir le tableau 7 ne pose aucun problème.

Le facteur de reliabilité généralisé R_{g2} est égal à 0,266. R_{g2} est supérieur à R_{g1} (= 0,196)... Continuons à effectuer les corrections.

A3	B3	C3	D3	E3	F3	G3
h,k,l	θ	I ₂	LP.	$I_3 = \frac{I_2}{LP}$	$\sqrt{I_3}$	F _c (1,4)
1,1,1	14,195	12,500	15,400	0,812	0,901	57,809
2,2,0	23,621	5,958	5,190	1,148	1,071	63,482
3,1,1	28,020	1,871	3,560	0,526	0,725	40,578
4,0,0	34,511	2,033	2,320	0,876	0,936	49,812
3,3,1	38,135	0,842	1,950	0,432	0,657	32,543
4,2,2	43,938	1,154	1,610	0,717	0,847	40,481
5,1,1-3,3,3	47,392	0,931	1,530	0,609	0,780	37,519
					$\sum \sqrt{I_3} = 5,917$	$\sum_{=322,225} F_{c}(1,4)$
	H3	10				
		၂၁		K3	R3	
Y ₃	$=\frac{\sum F_c(1,4)}{\sum \sqrt{I_3}}$	$F_0 = Y_3 \sqrt{1}$	3 F	$\frac{\mathbf{K3}}{\mathbf{F}_{c}(1,4)-\mathbf{F}_{0}}$	R3 $R_3 = \frac{ F_c(1,4) }{F_0}$	<u>- F₀ </u>
Y ₃	$=\frac{\sum F_{c}(1,4)}{\sum \sqrt{I_{3}}}$ 54,454	$F_0 = Y_3 \sqrt{1}$ 49,060	3 F	K3 $F_{c}(1,4) - F_{0}$	R3 $R_3 = \frac{ F_c(1,4) }{F_0}$ 0,178	- F ₀
Y ₃	$=\frac{\sum_{c}F_{c}(1,4)}{\sum_{v}\sqrt{I_{3}}}$ <u>54,454</u> <u>54,454</u>	$F_0 = Y_3 \sqrt{1}$ $\frac{49,060}{58,346}$		K3 $F_{c}(1,4) - F_{0}$ 8,749 5,136	$R_{3} = \frac{ F_{c}(1,4) }{F_{0}}$ $0,178$ 0,088	<u>- F₀ </u>
Y ₃	$=\frac{\sum_{c} F_{c}(1,4)}{\sum_{c} \sqrt{I_{3}}}$ 54,454 54,454 54,454	$F_0 = Y_3 \sqrt{1}$ $49,060$ $58,346$ $39,475$	3 F	K3 $F_c(1,4) - F_0$ 8,749 5,136 1,103	$R_{3} = \frac{ F_{c}(1,4) }{F_{0}}$ $0,178$ $0,088$ $0,028$	<u> </u>
Y ₃	$=\frac{\sum_{c} F_{c}(1,4)}{\sum_{c} \sqrt{I_{3}}}$ 54,454 54,454 54,454 54,454	$F_0 = Y_3 \sqrt{1}$ $\frac{49,060}{58,346}$ $\frac{39,475}{50,979}$	3 F	K3 $F_c(1,4) - F_0$ 8,749 5,136 1,103 1,167	$R_{3} = \frac{ F_{c}(1,4) }{F_{0}}$ $0,178$ $0,088$ $0,028$ $0,023$	<u></u>
Y ₃	$=\frac{\sum_{c} F_{c}(1,4)}{\sum_{c} \sqrt{I_{3}}}$ 54,454 54,454 54,454 54,454 54,454	$F_0 = Y_3 \sqrt{1}$ $49,060$ $58,346$ $39,475$ $50,979$ $35,775$	3 F	K3 $F_c(1, 4) - F_0$ 8,749 5,136 1,103 1,167 3,233	$R_{3} = \frac{ F_{c}(1,4) }{F_{0}}$ $0,178$ $0,088$ $0,023$ $0,023$ $0,090$	<u></u>
Y ₃	$=\frac{\sum_{c} F_{c}(1,4)}{\sum_{c} \sqrt{I_{3}}}$ 54,454 54,454 54,454 54,454 54,454 54,454 54,454	$F_0 = Y_3 \sqrt{1}$ $49,060$ $58,346$ $39,475$ $50,979$ $35,775$ $46,106$		K3 $F_c(1, 4) - F_0$ 8,749 5,136 1,103 1,167 3,233 5,624	$R_{3} = \frac{ F_{c}(1,4) }{F_{0}}$ $0,178$ $0,088$ $0,028$ $0,023$ $0,023$ $0,090$ $0,122$	<u></u>

9.2.2. Correction due au facteur de LORENTZ-POLARISATION (tableau 8)

 Tableau 8 : Correction de multiplicité et de LORENTZ-POLARISATION.

 $\sum F_0 = 322,225$

Le travail consiste à corriger l'intensité mesurée I_2 en la divisant par le facteur de LORENTZ-POLARISATION (*LP*).

$$LP = 1,12 \frac{1+0,78\cos^{2} 2\theta}{\sin \theta \sin 2\theta}$$
(12)

 $F_{c}(1, 4) - F_{0}$

Celui-ci dépend de θ .

Les facteurs de *LP* sont calculés et reportés colonne D3. L'intensité corrigée sera appelée I_3 (colonne E3). Aucune difficulté à signaler pour finir de remplir ce tableau. Le facteur de reliabilité généralisé R_{g3} est égal à 0,0930... Les calculs commencent à «coller à la théorie».

 $\sum |F_{c}(1,4) -$

=0.093

R_{g3}

A4	B4	C4	D4	E4	F4	G4
h,k,l	θ	I ₃	A*	$I_4 = I_3 \times A^*$	$\sqrt{I_4}$	F _c (1,4)
1,1,1	14,195	0,812	21,050	17,086	4,134	57,809
2,2,0	23,621	1,148	17,040	19,563	4,423	63,482
3,1,1	28,020	0,526	15,410	8,098	2,846	40,578
4,0,0	34,511	0,876	13,240	11,604	3,406	49,812
3,3,1	38,135	0,432	12,330	5,322	2,307	32,543
4,2,2	43,938	0,717	10,320	7,398	2,720	40,481
5,1,1-3,3,3	47,392	0,609	8,980	5,466	2,338	37,519
					$\sum \sqrt{I_4} = 22,173$	$\sum_{c} F_c(1,4)$
						=322,225

9.2.3. Correction due à l'absorption de RX (tableau 9)

H4	J4	K4	R4
$Y_4 = \frac{\sum F_c(1,4)}{\sum \sqrt{I_4}}$	$F_0 = Y_4 \sqrt{I_4}$	$ F_{c}(1,4) - F_{0} $	$R_{4} = \frac{\left F_{c}(1,4) - F_{0}\right }{F_{0}}$
14,532	60,068	2,259	0,038
14,532	64,274	0,793	0,012
14,532	41,354	0,776	0,019
14,532	49,503	0,310	0,006
14,532	33,524	0,982	0,029
14,532	39,526	0,955	0,024
14,532	33,974	3,545	0,104
	$\sum F_0 = 322,225$	$\sum_{e=9,619} F_{c}(1,4) - F_{0} $	$R_{g4} = \frac{\sum F_{c}(1,4) - F_{0} }{\sum F_{0}}$ =0,030

Tableau 9 : Correction de multiplicité, de LORENTZ-POLARISATION et d'absorption.

Le tube de LINDEMANN a un rayon R = 0,015 cm. La valeur de $\frac{\mu}{\rho}$ relative au silicium et au rayonnement K_{α} du cuivre est égale à 60,6 cm².g⁻¹. La masse volumique du silicium est ρ = 2,33 g.cm⁻³. D'où la valeur de μR = 60,6×2,33×0,015 = 2,12.

En utilisant le tableau 3, on peut calculer le facteur d'absorption A^* pour les différents angles θ de diffraction (par double interpolation linéaires sur les valeurs de μR et les valeurs de θ). Ces valeurs de A^* sont reportées dans la colonne D4. En multipliant l'intensité I_3 par A^* , on obtient l'intensité corrigée I_4 (colonne E4). Le facteur de reliabilité généralisé R_{o4} est égal à 0,030 ce qui est remarquable.

L'évolution de la valeur du facteur de reliabilité généralisé R_{gn} en l'absence de correction et en fonction des corrections cumulées énoncées dans l'ordre du TP. (Multiplicité, LORENTZ-POLARISATION, et absorption) est donnée sur la figure 7.

9.3. Étude de la variation du facteur de reliabilité généralisé en fonction du facteur d'agitation thermique

Jusqu'à présent, nous avons corrigé les intensités mesurées, et calculé les reliabilités en fonction des facteurs de structure observés F_0 obtenus à partir des intensités corrigées.

Nous avons pris comme référence des facteurs de structure calculés à partir du facteur de diffusion $f_{si}(B)$ fixé pour une valeur de *B* égale à 1,4 $Å^2$.

A présent, nous modifions les valeurs des facteurs de diffusion $f_{si}(B)$, liés aux facteurs d'agitation thermique $f_T(B)$ par les relations (17) et (18).

$$f_{si}(B) = f_{si}(0) \ f_T(B)$$
(17)

$$f_T(B) = \exp\left[-B \frac{\sin^2 \theta}{\lambda^2}\right]$$
(18)

La variable utilisée ici sera le facteur de température *B*. Nous étudierons en particulier la variation des facteurs de structure F_c calculés et des facteurs de reliabilité, par rapport aux facteurs de structure observés, compte tenu de toutes les corrections effectuées précédemment. Nous prendrons ici comme valeur de *B* (en $Å^2$) : 0 ; 0,5 ; 1 ; 1,6 ; 1,9 ; 2,1 ; 2,4 ; 2,7 et 3.

Nous connaissons déjà les résultats concernant la valeur de $B = 1,4 \text{ Å}^2$. Pour des raisons de place, nous donnons ici que les tableaux 10 et 11 correspondants aux valeurs de B (en Å^2) : 0 ; 0,5. Les tableaux correspondants aux valeurs de B (en Å^2) : 1 ; 1,6 ; 1,9 ; 2,1 ; 2,4 ; 2,7 et 3, sont remplis sur le même type que le tableau 11.

A.5	B5	C5	D5	E5	F5	G5
θ	sinθ/λ	h,k,l	$f_{Si}(0)$	X	$\overline{F}(h,k,l) \times F(h,k,l)$	$F'_{c}(0)$
14,195	0,159	1,1,1	10,590	32	3588,739	59,906
23,621	0,260	2,2,0	8,720	64	4866,458	69,760
28,020	0,305	3,1,1	8,170	32	2135,965	46,216
34,511	0,368	4,0,0	7,520	64	3619,226	60,160
38,135	0,400	3,3,1	7,200	32	1658,880	40,729
43,938	0,450	4,2,2	6,720	64	2890,138	53,760
47,392	0,478	5,1,1-3,3,3	6,451	64	2663,386	51,608
						$\sum F'_{c}(0)$
						=382,140

H5	J5	K5	L5	R5
F _o	$Y_5(0) = \frac{\sum F_0}{\sum F_c(0)}$	$F_{c}(0) = F'_{c}(0) \times Y_{5}(0)$	$\left F_{c}(0)-F_{0}\right $	$R_5 = \frac{\left F_c(0) - F_0\right }{F_0}$
60,068	0,843	50,513	9,555	0,159
64,275	0,843	58,822	5,452	0,085
41,354	0,843	38,970	2,384	0,058
49,503	0,843	50,728	1,225	0,025
33,524	0,843	34,343	0,819	0,024
39,526	0,843	45,331	5,805	0,147
33,974	0,843	43,516	9,542	0,281
$\sum F_0 = 322,225$		$\sum F_{c}(0)=322,225$	$\sum_{=34,782} F_{c}(0) - F_{0} $	$Rg_5 = \frac{\sum F_c(0) - F_0 }{\sum_{=0,108} F_0}$

Tableau 10 : Sans facteur d'agitation ($B = 0 \text{ Å}^2$).

A6	B6	C6	D6	E6	F6	G6	H6	J6
θ	$\sin\theta/\lambda$	h,k,l	f _{Si} (0)	f _T (0,5) B=0,5	f _{si} (0,5)	x	$\overline{F}(h,k,l) \times F(h,k,l)$	F' _c (0,5)
14,195	0,159	1,1,1	10,590	0,988	10,463	32	3503,126	59,187
23,621	0,260	2,2,0	8,720	0,967	8,432	64	4550,571	67,458
28,020	0,305	3,1,1	8,170	0,955	7,802	32	1948,053	44,137
34,511	0,368	4,0,0	7,520	0,935	7,031	64	3164,018	56,250
38,135	0,400	3,3,1	7,200	0,923	6,646	32	1413,248	37,593
43,938	0,450	4,2,2	6,720	0,904	6,075	64	2361,867	48,599
47,392	0,478	5,1,1-3,3,3	6,451	0,892	5,754	64	2119,160	46,034
								$\sum F'_{c}(0,5)$
								=359,258

K6	L6	M6	N 6	R6
F ₀	$Y_{5}(0,5) = \frac{\sum F_{0}}{\sum F'_{c}(0,5)}$	$F_{c}(0,5) = F'_{c}(0,5) \times Y_{5}(0,5)$	$ F_{c}(0,5) - F_{0} $	$R_6 = \frac{\left F_c(0,5) - F_0\right }{F_0}$
60,068	0,897	53,086	6,982	0,116
64,275	0,897	60,504	3,770	0,059
41,354	0,897	39,587	1,767	0,043
49,503	0,897	50,451	0,948	0,019
33,524	0,897	33,718	0,194	0,006
39,526	0,897	43,589	4,063	0,103
33,974	0,897	41,289	7,315	0,215
$\sum F_0 = 322,225$		$\sum F_{c}(0,5)=322,225$	$\sum_{\substack{F_{c}(0,5) - F_{0} \\ = 25,040}} F_{c}(0,5) - F_{0} $	$Rg_{6} = \frac{\sum \left F_{c}(0,5) - F_{0} \right }{\sum F_{0}}$ =0,078

Tableau 11 : Correction de facteur d'agitation correspondant à $B = 0.5 \text{ Å}^2$.

Dans ce dernier tableau, soient $F'_c(0,5)$ (B = 0,5), les facteurs de structure non calibrés. Le facteur de calibration doit être égal à :

$$Y(0,5) = \frac{\sum F_0}{\sum F'_c(0,5)}$$
(31)

et on obtient les facteurs de structure calculés et calibrés que l'on a appelé $F_c(0,5)$:

$$F_c(0,5) = F'_c(0,5) \times Y(0,5)$$
(33)

Le tableau 12 et la figure 8 donnent les différentes valeurs du facteur de reliabilité généralisé R_g en fonction de B.

$B(\mathring{A}^2)$	0	0,5	1	1,4	1,6	1,9	2,1	2,4	2,7	3
Facteur de reliabilité généralisé	0,108	0,078	0,050	0,030	0,019	0,017	0,023	0,036	0,054	0,072

Tableau 12 : Variation du facteur de reliabilité généralisé en fonction de la valeur de $B(A^2)$.

Figure 8 : Variation du facteur de reliabilité généralisé en fonction de la valeur de B en $Å^2$.

On obtient un minimum pour $B = 1.9 \text{ Å}^2$. Dans ce cas, le facteur de reliabilité de chaque raie est inférieur ou égal à 5 % et le facteur de reliabilité généralisé est égal à 1,7 %.

Donc la théorie est la plus proche de la réalité pour un facteur d'agitation thermique isotrope égal à B = 1, 9 $Å^2$, ce qui est une valeur de B acceptable pour un élément mi-lourd comme le silicium.

CONCLUSION

Avec les trois corrections : multiplicité, LORENTZ-POLARISATION et absorption appliquées aux intensités observées sur le diffractogramme des poudres du silicium, et en choisissant un facteur d'agitation thermique isotrope correspondant à B = 1,9 Å², nous avons obtenu un facteur de reliabilité généralisé égal à 2 %. Cette étude détaillée de l'intensité des raies du diagramme des poudres du silicium, donne donc d'excellents résultats et montre bien l'influence des différents facteurs correctifs. Elle peut être réalisée dans le cadre d'un TP de quatre heures en utilisant un tableur tel que le logiciel EXCEL[®].

Ce TP peut servir judicieusement d'introduction aux méthodes de résolution des structures à partir des spectres X de monocristaux (Méthode de l'atome lourd, par exemple...).

BIBLIOGRAPHIE

- R. OUAHES : «Éléments de radiocristallographie» - Publisud, Paris (1984).

- M.J. BUERGER, G.H. Mac GILLAVRY, N.F.M. HENRY, J.S. KASPER, K. LONSDALE : «*International table for X rays cristallography*» - Volume I, II et III - Kynoch Press, Birmingham (1969).

– M. VAN MEERSCHE, J. FENEAU-DUPONT : «Introduction à la cristallographie et à la chimie structurale» - Vander, Louvain (1973).