Étude du régime de décharge d'un condensateur dans un circuit R, L avec une carte Candibus et le logiciel Regressi

par Philippe JULIARD LTR Henri Brisson, 18100 Vierzon et Jean-Michel MILLET Lycée Descartes, 37000 Tours

MONTAGE

Le B.F. délivre une tension continue ~ 4 V.

C (boîte A.O.I.P.) : C ~ 2 μ F.

L bobine de labo sans fer : L ~ 71 mH ; $R_0 \sim 11 \Omega$.

R (boîte A.O.I.P.) : variable.

K₁ fermé, K₂ ouvert : charge de C.

K1 ouvert, K2 fermé : décharge de C dans R, L.

Le candibus est branché aux bornes de C et on enregistre u_C en fonction de t.

THÉORIE

Équation différentielle vérifiée par u_C :

$$\frac{d^2 u_C}{dt^2} + 2 k \omega_0 \frac{du_C}{dt} + \omega_0^2 u_C = 0$$
$$\omega_0 = \frac{1}{\sqrt{LC}} \quad ; \quad k = \frac{1}{2} \left(R + R_0 \right) \sqrt{\frac{C}{L}} = \frac{1}{2} \left(R + R_0 \right) C \omega_0$$

Résistance critique pour le circuit étudié : $R_C + R_0 \sim 377 \Omega$. Pulsation propre : $\omega_0 = 2654 \text{ rads}^{-1}$.

RÉGLAGE DU CANDIBUS PILOTÉ PAR LE LOGICIEL REGRESSI

Une acquisition déclenchée par un seuil descendant (~ 3,9 V). Entre deux mesures : 0,1 ms.

Durée de l'acquisition : entre 2 ms et 12 ms suivant le cas.

RÉSULTATS OBTENUS

1. En régime pseudo périodique

Plusieurs enregistrements de $u_C (\equiv V_A)$ ont été effectués pour R variant de 0 Ω à 70 Ω .

La page A est un de ces enregistrements pour $R = 30 \Omega$.

La modélisation a été effectuée entre les points marqués x à partir de l'équation différentielle du 2^{nd} ordre :

$$V_{A}'' = -2 * k * 2650 * V_{A}' - 2650 * 2650 * V_{A}$$
$$= \frac{d^{2} u_{C}}{dt^{2}} \qquad = \frac{du_{C}}{dt} \qquad = u_{C}$$

V_A" est calculée par le logiciel.

 $\omega_0=2650\ rads^{-1}$ peut être calculée pas modélisation. D'une valeur de R sur l'autre, le résultat reste remarquablement constant ; pour gagner du temps sur les calculs nous avons donc introduit la valeur numérique mais ce n'est pas une obligation.

Résultats de la modélisation : cf page A pour les valeurs de V'A, et k.

 V'_{A_0} : valeur initiale de $\left(\frac{du_C}{dt}\right)$ (au 1^{er} point de l'intervalle de modélisation).

Écart relatif sur VA: 0,62 %

Excellent accord entre points expérimentaux et courbe modélisée.

834

<u>Page B</u> : La même modélisation ayant été effectuée pour différentes valeurs de R, la page B récapitule les valeurs de R et k. (R varie de 0 à 70 Ω , de 10 Ω en 10 Ω).

On représente k en fonction de R et on modélise :

$$k = \frac{1}{2} \left(R + R_0 \right) \sqrt{\frac{C}{L}} = 0.5 * \left(R + R_0 \right) * 5.3 * 0.001$$

On vérifie ainsi la linéarité de k avec R et on obtient la valeur de R_0 (résistance de la bobine).

Là aussi l'accord est excellent.

<u>Page C</u>: A partir des valeurs de u_C enregistrées on peut faire calculer par le logiciel :

• Énergie dans le condensateur : $w_C = \frac{1}{2} C u_C^2$

avec : $C = 2 \mu F$ et $w_C en \mu J : w_C = u_C * u_C$

• Énergie dans la bobine : $w_L = \frac{1}{2}L i^2 = \frac{1}{2}LC^2 \left(\frac{du_C}{dt}\right)^2$ $w_L = \frac{1}{2}C \times \frac{1}{\omega_0^2} \times \left(\frac{du_C}{dt}\right)^2$ avec : $C = 2 \mu F$ et w_L en μJ : $w_L = (1,424 e^{-7}) * \left(\frac{du_C}{dt}\right)^2$

<u>Remarque</u> : $\frac{du_C}{dt} = V_A$ ' déjà calculé.

• Energie «totale» dans le circuit : $w_{tot} = w_C + w_L$

Page C: On représente w_{tot} en fonction de t. On modélise par la fonction représentant théoriquement les variations de w_{tot} en régime pseudo périodique. On a ainsi une nouvelle façon de retrouver le coefficient d'amortisseur k.

La page C correspond à $R = 30 \Omega$; on retrouve une valeur de k en accord avec celle trouvée page A (~ 103 m).

<u>Remarque</u> : il apparaît lors de la décroissance de w_{tot} des paliers sur lesquels $\frac{dw_{tot}}{dt} = 0$.

<u>Interprétation</u> : w_{tot} reste constant lorsque i = 0 (disparition momentanée de l'effet Joule).

cf page **D** : on superpose w_{tot} (t) et V'_A (t).

 $V'_A(t) \left(\equiv \frac{du_C}{dt}\right)$ étant proportionnelle à i, il y a bien concordance entre i = 0 et $\frac{dw_{tot}}{dt} = 0.$

 $\underline{\text{Page } E} : \text{Analogue à la page } B \text{ mais pour les modélisations de w}_{tot}, \\ R \text{ variant de 0 à 70 } \Omega. \text{ Notez la concordance entre les valeurs de k} \\ \text{page } B \text{ et celles de la page } E. \\ \end{array}$

2. En régime critique (ou autour)

cf pages F et G analogues des pages A et B.

3. En régime apériodique

cf pages H et I analogues des pages A et B.

CONCLUSION

On voit sur cet exemple physiquement simple l'intérêt de l'outil informatique :

- possibilité d'étudier complètement un phénomène transitoire ;

- possibilités poussées de modélisation permettant de vérifier la concordance entre théorie et expérience ;

- Mise en évidence de phénomènes ignorés jusque là : c'est la cas ici pour la façon dont décroît w_{tot} en régime pseudopériodique (existence de paliers).

Page A

Modélisation :

 $V_{A}'' = -2 * k * 2650 * V_{A}' - 2650 * V_{A}; R = 30 \Omega; V_{A}' 0 = -6.5947.10^{3} \pm 11 k = 109.8 m \pm 220 \mu;$ Écart relatif sur $V_{A} = 0,62 \%$

Modélisation :

 $k = 0.5 * (R + R_0) * 5.3 * 0.001;$ $R_0 = 11.467 \pm 260 \text{ m};$ Écart relatif sur k = 0.70 %.

Page C

Modélisation :

$$\begin{split} & W_{tot} = W_0 * (\exp{(-5300 * k * t)}) * (1 + k * \cos{(5300 * (sqrt (1 - k * k)) * (t - t_0))}) \\ & R = 30 \ \Omega; \quad W_0 = 13.31 \pm 100 \ m \ k = 108.91 \ m \pm 1.1 \ m \ t_0 = -144.84 \ \mu \pm 11 \ \mu \\ & \text{Écart relatif sur } W_{tot} = 2.0 \ \%. \end{split}$$

Courbe C

Page E

Modélisation :

 $k = 0.5 * (R + R_0) * 5.3 * 0.001;$ $R_0 = 11.477 \pm 300 \text{ m};$ Écart relatif sur k = 0.79 %

Page F

Modélisation :

 $\begin{array}{ll} V_{A}{}''=&-2*k*2650*V_{A}{}'-2650*2650*V_{A}{}; & R=350\;\Omega\\ V_{A}{}'0=&-4.411\;k\pm46\quad k=967.5\;\;m\pm3,5\;m; & \text{Écart relatif sur }V_{A}=0,\!43\;\% \end{array}$

Page G

Modélisation :

 $k = 0.5 \, * \, (R + R_0) \, * \, 5.3 \, * \, 0.001; \quad R_0 = 12.602 \pm 2.2; \quad \text{\' Ecart relatif sur } k = 0.92 \, \, \%$

Page H

 $\begin{array}{l} \mbox{Modélisation:} \\ V_A{''} = -\ 2 * k * 2650 * V_A{'} - 2650 * 2650 * V_A; \\ V_A{'0} = -\ 494.93 \pm 77 \quad k = 2.1543 \pm 5.6 \ m; \\ \end{array} \\ \begin{array}{l} \mbox{Écart relatif sur } V_A = 0.38 \ \% \end{array}$

Courbe H

840

Page I

 $\begin{array}{ll} \mbox{Modélisation:} \\ \mbox{$k=0.5*(R+R_0)*5.3*0.001$; $R_0=13.572\pm1.5$; $ Écart relatif sur $k=0.32 \%$} \end{array}$

Courbe I