Une progression pour l'étude du multivibrateur astable en Terminale C

Marcel MANCINI Lycée I. Dauphin, 84300 Cavaillon

La difficulté essentielle dans la présentation de cette leçon n'est pas, à mon sens, de nature conceptuelle, mais se situe sur le plan pédagogique. Elle réside, je crois, dans le fait qu'il faut avoir en permanence en mémoire l'essentiel des résultats successifs des déductions opérées de manière progressive, et il importe donc de trouver un moyen permettant à l'auditoire de ne pas perdre le «fil» au cours des diverses investigations.

L'article qui suit n'a d'autre prétention que de présenter une méthode que j'ai expérimentée dans une classe de Terminale et qui diminue l'effort de concentration des élèves tout en les rendant très actifs.

Nous ne nous étendrons pas sur des points bien connus de tous et nous nous contenterons de donner le libellé du paragraphe dans ce cas.

1. PORTES LOGIQUES ET, OU, NON-ET, NON

Cette étude fait partie du programme des classes de cinquième des collèges, on pourra concrétiser l'étude - car certains élèves n'en ont jamais entendu parler auparavant - par l'introduction de modèles avec interrupteurs (figure 1).

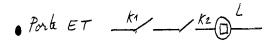
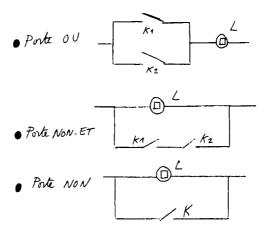



Figure 1

Au niveau du collège, les modèles avec interrupteurs se limitent aux portes ET et OU.

On confectionne sans peine les tables de vérité correspondantes.

2. CARACTÉRISTIQUE DE TRANSFERT D'UN INVERSEUR NON

L'étude expérimentale peut être faite au multimètre ou à l'oscillographe. La caractéristique réelle n'est pas très éloignée de la caractéristique idéalisée (SN 74 HCOO N) (figure 2).

 ${f v}_s$: tension de sortie ${f v}_E$: tension d'entrée L'ensemble peut être alimenté par une pile de 4,5 V

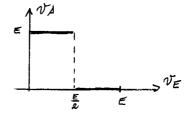


Figure 2

3. CHARGE D'UN CONDENSATEUR À TRAVERS UNE RÉSISTANCE

Voir à ce sujet la fiche «Multivibrateur astable» élaborée par l'Inspection Générale ou l'article de M. MOREAU dans le B.U.P. nº 719 - page 1439.

Expérience classique de visualisation de la tension \mathbf{u}_c aux bornes du condensateur à l'oscillographe. Continuité de \mathbf{u}_c (ou de la charge q du condensateur).

4. ASTABILITÉ DU SYSTÈME ÉTUDIÉ ET CONFECTION D'UN TABLEAU PORTANT $v_{s2}, v_{e2}, v_{s1}, u_c$ ET v_{e1} À DIVERS INSTANTS

Rappelons le croquis du montage.

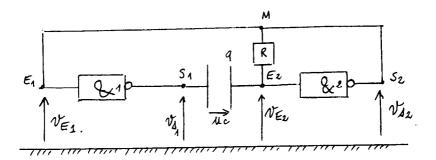


Figure 3

Au lieu d'étudier, avec de longs développements, les deux premiers basculements successifs des inverseurs NON... etc. et de faire à la fin de la leçon un tableau récapitulatif, on n'étudie que le premier basculement et on dresse immédiatement un tableau qui sera rempli méthodiquement et que l'auditoire va avoir constamment sous les yeux.

Supposons qu'à t=0, $v_{s2}=E$. Donc $v_{E1}=E$ aussi. Par suite $v_{s1}=0$ et $v_{E2} \leq \frac{E}{2}$. Comme $u_c=v_{E2}-v_{s1}$, on remarque que le condensateur est, dans le cas le plus général, partiellement chargé à t=0; $u_c \leq \frac{E}{2}$ à cet instant.

A partir de t=0, il va circuler un courant d'intensité i - le courant électrique descend le potentiel - de s_2 vers E_2 à travers la résistance R. La charge q du condensateur va donc augmenter, à partir de t=0 et corrélativement, v_{E_2} augmente également ... jusqu'à $\frac{E}{2}$, il y a alors basculement de l'inverseur 2 qui entraı̂ne simultanément le basculement de l'inverseur 1.

Nous appellerons t_0 (ne pas confondre avec t = 0) l'instant précis où ces premiers basculements ont lieu, t_0^- l'instant qui les précède et t_0^+ l'instant qui succède à ces basculements.

A ce stade, on distribue à la classe le tableau suivant dont toutes les cases sont vides. Seules figurent la ligne des dates de t = 0 à t_{0} + et la colonne des tensions v_{s2} , v_{E2} , v_{s1} , u_c et v_{E1} .

Remarque: le problème de savoir pourquoi le système continue à évoluer après le basculement est certes intéressant pour le professeur, (cf. article de M. MOREAU déjà cité), mais devant les élèves, il n'est pas utile, je pense, de le soulever, et une attitude pragmatique s'impose.

Les élèves remplissent en général les quatres premières case de v_{s2} , puis les quatre premières de v_{E1} et enfin les quatre premières de v_{s1} . Ensuite, c'est le tour des trois premières cases de la ligne v_{E2} et des mêmes cases de la ligne de u_C . Sont encore vides alors les quatrièmes cases de v_{E2} et de v_{E2} . En demandant à l'auditoire laquelle de ces deux on pourrait remplir d'abord, c'est v_{E3} qui est donnée (continuité de cette tension). La case v_{E3} sera telle que $v_{E3} = \frac{E}{2} + E = \frac{3E}{2}$. La colonne correspondant à v_{E3} est entièrement remplie.

Le système va-t-il en rester là ? Observation du croquis du montage, qui figure sur la même feuille que le tableau distribué ainsi que la caractéristique de transfert d'un inverseur NON.

 $v_{E2} > v_{s2}$. Donc - d'après la règle des potentiels - un courant i va traverser R depuis E_2 jusqu'à S_2 . Ce faisant, le condensateur va se décharger et il le sera complètement quand $v_{E2} = E$. Mais v_{E2} continue à décroître et lorsque cette tension atteint $\frac{E}{2}$, c'est le début du second basculement dont la date sera appelée t_1 .

-	Va (Chackers que de l'an verseu Nort)	Les field in diagnost the sauts" diver quint conclutify a current conclutify a current or vision	Les flictes or diquent les "sauts" de 151.	$\mathcal{M}_{\mathcal{C}} = v_{\mathcal{E}_2} - v_{\mathcal{A}_2}$		FELD S. B. BLED AS.
F2+	0	2年	0 + E	十 119	0	
	ш	川っ	0	+ 21A	Ш	rebutdu Kasule Rasule nents de
- £2-	Ш	+ 6/14	0	+ 2 ⊓	Ш	Schole Schole Cobien Bases, mens, mens
4+	E	1年 1年 2	0 1	1 川3	ய	
0 to	0	日子	- - -	127	0	Debut du Seunds Saunds du 142
· 64=	0	□] &	巾	可2	0	1
40+		원 8	→丘	万	0	
(¢)	ш	11/2	0 →E	D 5	Ш	Debut do premios basulements de 1 et 2 p
- t _c	m	w ≈	0	刊る	П	1,70
0	ய	№	0	\\ \ ₂ \pi	Ш	Debut do premins bazulement de 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	\mathcal{V}_{2}	2 E	24	Mc	$\mathcal{N}_{\mathcal{E}_1}$	9

. Les pointilles ente tot el to - tot to - to the conspondent à des untervalles de tents pendent Boquels & votes à value de mancie, continue

On demande alors aux élèves de compléter la ligne des dates du tableau en mettant des pointillés entre t_{0^+} et t_1 ; t_{1^-} sera l'instant qui précède le début du deuxième basculement.

A partir de là, les élèves se «débrouillent» d'eux-mêmes, l'astabilité du système étant acquise.

Il faut compter une dizaine de minutes, tous s'investissent, j'ai été surpris de constater que c'est parfois ceux qui réussissent le moins bien habituellement, qui trouvent les réponses plus rapidement que les autres. L'ambiance était celle d'une finale de jeu d'échecs!

On notera l'idendité des états électriques de v_{s2} aux instants t_k – et t_k , de même pour toutes les autres tensions.

Les cases en traits gras correspondent aux discontinuités pour v_{E2}.

5. PÉRIODICITÉ DES SIGNAUX ET TRACÉ DES COURBES v_{s2} , v_{E1} , v_{s1} , u_c et v_{E2} EN FONCTION DU TEMPS

Observons notre tableau. Comme on retrouve à t_0 et t_2 les mêmes états pour tous les potentiels et tensions, a priori, il n'y a aucune raison pour que les durées Δt et passage de t_0 à t_1 , de t_1 à t_2 , etc... ne soient pas les mêmes. Les signaux sont périodiques.

La courbe
$$v_{E2} = f_{(t)}$$
 se déduira de $u_c = v_{E2} - v_{s1} = h(t)$.

6. CALCUL DE LA PÉRIODE DANS LE CAS SIMPLE OÙ LA TENSION DE BASCULEMENT EST ÉGALE À $\frac{E}{2}$

Le calcul dans le cas général est hors de portée d'un élève de Terminale. On peut, par contre, obtenir le résultat en procédant simplement.

Le tableau confectionné, montre qu'à partir de t_0 , u_c varie de $\frac{E}{2}$ à $-\frac{E}{2}$, puis entre $-\frac{E}{2}$ et $+\frac{E}{2}$ etc... Le basculement des inverseurs se

faisant de façon périodique, la charge ou la décharge du condensateur seront interrompues périodiquement.

Calculons la durée
$$\Delta t$$
 pour que u_c passe de $-\frac{E}{2}$ (à t_1) à $\frac{E}{2}$ à (t_2) .

D'après l'équation $V_c = V_f - (V_f - V_i) e^{-\frac{t}{\tau}}$ avec $\tau = R.C$, dans laquelle V_f est la tension « d'attaque» supposée constante aux bornes du dipôle R, C, Vi la tension initiale aux bornes du condensateur et V_c la tension aux bornes de ce dernier à un instant quelconque t et d'après l'équation $t_0 = \tau \ln \frac{V_f - V_i}{V_f - V_o}$ où t_o est le temps qu'il faut pour que $V_o = \frac{E}{2}$ et $V_i = -\frac{E}{2}$, on obtient $t_o = \tau \ln \frac{\left[E - \left(-\frac{E}{2}\right)\right]}{\left(E - \frac{E}{2}\right)}$ soit $t_o = \tau \ln 3$. Par suite T = 2 $\tau \ln 3$.

La manipulation (en plus de tout ce qui a été étudié expérimentalement aux paragraphes 2. et 3.) viendra couronner les prévisions, sans oublier les applications pratiques.

7. CONCLUSION

L'analyse physique des phénomènes, ne doit pas être occultée, ici, comme ailleurs, par un traitement formel excessivement rigoureux qui ne peut que rebuter et démobiliser rapidement l'auditoire - et ce faisant - transformer cette leçon si vivante en repoussoir pour les élèves, ce qui serait bien regrettable.