
Copyright © 2007-2010 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series

Programmer's Guide

ps3000pg.en-2

PC Oscilloscopes

ContentsI

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

Contents
...11 Introduction

...11 Overview

...12 Minimum PC requirements

...23 Legal information

...34 Company details

...42 Technical information

...41 Driver

...42 Programming overview

...43 Device features

...41 AC/DC coupling

...52 Voltage ranges

...53 Oversampling

...54 Scaling

...55 Signal generator

...66 Triggering

...67 Combining oscilloscopes

...78 Sampling modes
...134 Functions

...141 ps3000_open_unit

...152 ps3000_open_unit_async

...163 ps3000_open_unit_progress

...174 ps3000_get_unit_info

...185 ps3000_set_channel

...196 ps3000_get_timebase

...207 ps3000_flash_led

...218 ps3000_set_siggen

...239 ps3000_set_ets

...2410 ps3000_set_trigger

...2511 ps3000_set_trigger2

...2612 ps3000SetAdvTriggerChannelProperties

...2813 ps3000SetAdvTriggerChannelConditions

...3014 ps3000SetAdvTriggerChannelDirections

...3115 ps3000SetPulseWidthQualifier

...3316 ps3000SetAdvTriggerDelay

...3417 ps3000_run_block

...3518 ps3000_run_streaming

...3619 ps3000_ready

...3720 ps3000_stop

...3821 ps3000_get_values

...3922 ps3000_get_times_and_values

...4123 ps3000_run_streaming_ns

...4224 ps3000_get_streaming_last_values

...4325 Callback function to copy data to buffer

...4526 ps3000_get_streaming_values

...4727 ps3000_get_streaming_values_no_aggregation

...4928 ps3000_save_streaming_data

...5029 ps3000_overview_buffer_status

...5130 Callback function to save data

...5231 ps3000_close_unit

IIPicoScope 3000 Series Programmer's Guide

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

...535 Programming examples

...531 C

...542 C++

...543 Visual Basic

...554 Delphi

...555 Excel

...556 Agilent VEE

...557 LabView
...576 Driver error codes

...583 Glossary

..61Index

Introduction1

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

1 Introduction
1.1 Overview

The PicoScope 3000 Series is a range of PC Oscilloscopes from Pico Technology.
 The range includes the following variants:

General-purpose PicoScope 3204, 3205 and 3206
High-precision PicoScope 3224 and 3424
Differential PicoScope 3425

The scopes are fully USB 2.0 -capable and backwards-compatible with USB 1.1 .
There is no need for an external power supply as power is supplied from the USB port,
making these oscilloscopes highly portable.

This manual explains how to use the API (application programming interface)
functions, so that you can develop your own programs to collect and analyse data
from the oscilloscope.

1.2 Minimum PC requirements

For the PicoScope 3000 Series PC Oscilloscope to operate correctly, you must connect
it to a computer with the minimum requirements to run Windows or the following
(whichever is the higher specification):

Processor Pentium-class processor or equivalent minimum.

Memory 256 MB minimum.

Disk space 10 MB minimum.

Operating system Microsoft Windows XP SP2, Vista or Windows 7.

Ports USB 1.1 compliant port minimum. USB 2.0 compliant port
recommended. Must be connected directly to the port or a
powered USB hub. Will not work on a passive hub.

59

60 59

59 60

PicoScope 3000 Series Programmer's Guide 2

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

1.3 Legal information

The material contained in this release is licensed, not sold. Pico Technology Limited
grants a licence to the person who installs this software, subject to the conditions
listed below.

Access

The licensee agrees to allow access to this software only to persons who have been
informed of these conditions and agree to abide by them.

Usage

The software in this release is for use only with Pico products or with data collected
using Pico products.

Copyright

Pico Technology Limited claims the copyright of, and retains the rights to, all material
(software, documents etc) contained in this release. You may copy and distribute the
entire release in its original state, but must not copy individual items within the
release other than for backup purposes.

Liability

Pico Technology and its agents shall not be liable for any loss, damage or injury,
howsoever caused, related to the use of Pico Technology equipment or software,
unless excluded by statute.

Fitness for purpose

As no two applications are the same, Pico Technology cannot guarantee that its
equipment or software is suitable for a given application. It is your responsibility,
therefore, to ensure that the product is suitable for your application.

Mission-critical applications

This software is intended for use on a computer that may be running other software
products. For this reason, one of the conditions of the licence is that it excludes use in
mission-critical applications, for example life support systems.

Viruses

This software was continuously monitored for viruses during production, but you are
responsible for virus-checking the software once it is installed.

Support

If you are dissatisfied with the performance of this software, please contact our
technical support staff, who will try to fix the problem within a reasonable time. If you
are still dissatisfied, please return the product and software to your supplier within 28
days of purchase for a full refund.

Upgrades

We provide upgrades, free of charge, from our web site at www.picotech.com. We
reserve the right to charge for updates or replacements sent out on physical media.

Trademarks

Windows is a trademark or registered trademark of Microsoft Corporation. Pico
Technology Limited and PicoScope are internationally registered trademarks.

Introduction3

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

1.4 Company details

You can obtain technical assistance from Pico Technology at the following address:

Address: Pico Technology
James House,
Colmworth Business Park,
Eaton Socon,
St Neots,
Cambridgeshire PE19 8YP
United Kingdom

Phone: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

Email:

Technical Support: support@picotech.com
Sales: sales@picotech.com

Web site: www.picotech.com

http://www.picotech.com

PicoScope 3000 Series Programmer's Guide 4

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2 Technical information
2.1 Driver

Important

You must install the PicoScope software, which includes the driver for the
PicoScope 3000 Series scope devices, before plugging the scope device into

your computer for the first time.

(If you do plug in a scope device before installing the driver, Windows will label the
device as Unknown. You will then need to manually delete the device using the

Device Manager before you can install the correct driver.)

The Windows XP/Vista/7 32-bit driver, picopp.sys, is installed under the control of

an information file, picopp.inf.

Once you have installed the PicoScope software, Windows will automatically install
the driver when you plug in the scope device for the first time.

2.2 Programming overview

The ps3000.dll library in your PicoScope installation directory allows you to

program a PicoScope 3000 Series PC Oscilloscope using standard C function calls.

A typical program for capturing data consists of the following steps:

Open the scope unit.
Set up the input channels with the required voltage ranges and coupling mode

.
Set up triggering .
Start capturing data. (See Sampling modes , where programming is discussed in
more detail.)
Wait until the scope unit is ready.
Copy data to a buffer.
Stop capturing data.
Close the scope unit.

Numerous sample programs are installed with your PicoScope software. These
show how to use the functions of the driver software in each of the modes available.

2.3 Device features

2.3.1 AC/DC coupling

Using the ps3000_set_channel() function, each channel can be set to either AC or
DC coupling. When AC coupling is used, any DC component of the signal is filtered
out.

13

14

5

4

6

7

53

18

Technical information5

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.3.2 Voltage ranges

It is possible to set the gain for each channel with the ps3000_set_channel()
function. This input voltage ranges available depend on the scope device that is
connected.

2.3.3 Oversampling

When the oscilloscope is operating at sampling rates less than the maximum, it is
possible to oversample. Oversampling is taking more than one measurement during
a time interval and returning an average. If the signal contains a small amount of
noise, this technique can increase the effective vertical resolution of the oscilloscope
by the amount given by the equation below:

Increase in resolution (bits) = log (oversample) / log (4)

Applicability Available in block mode only.

2.3.4 Scaling

The PicoScope 3000 Series PC Oscilloscope has a resolution of 12 bits, but the
oscilloscope driver normalises all readings to 16 bits. The following table shows the
relationship between the reading from the driver and the voltage of the signal.

Constant Reading Voltage

PS3000_LOST_DATA -32 768 Indicates a buffer overrun in fast streaming
mode.

PS3000_MIN_VALUE -32 767 Negative full scale

0 0 Zero volts

PS3000_MAX_VALUE 32 767 Positive full scale

2.3.5 Signal generator

The PicoScope 3204/5/6 PC Oscilloscopes have a built-in signal generator which is
set using ps3000_set_siggen() . The output of the 3204 is a fixed-frequency square
wave, while the 3205 and 3206 can produce a selection of accurate frequencies from
100 Hz to 1 MHz, and the waveform can be set to sine, square or triangle and swept
back and forth in frequency. These options are selected under software control.

Applicability Available only on the PicoScope 3204, 3205 and 3206
oscilloscopes.

The signal generator output and external trigger input share
the same connector, so these two functions cannot be used
independently. It is possible, however, to use the output from the
signal generator as a trigger.

18

8

12

21

59

PicoScope 3000 Series Programmer's Guide 6

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.3.6 Triggering

PicoScope 3000 Series PC Oscilloscopes can either start collecting data immediately,
or be programmed to wait for a trigger event to occur. In both cases you need to use
the ps3000_set_trigger() function. A trigger event can occur on any of the
conditions available in the simple and advanced triggering modes.

Applicability Available in block mode and fast streaming mode only. Calls
to the ps3000_set_trigger() function have no effect in
compatible streaming mode .

2.3.7 Combining oscilloscopes

It is possible to collect data using up to four PicoScope 3000 Series PC Oscilloscopes
at the same time. Each oscilloscope must be connected to a separate USB port. If a
USB hub is used it must be a powered hub. The ps3000_open_unit() function
returns a handle to an oscilloscope. All the other functions require this handle for
oscilloscope identification. For example, to collect data from two oscilloscopes at the
same time:

handle1 = ps3000_open_unit()
handle2 = ps3000_open_unit()

ps3000_set_channel(handle1)
... set up unit 1
ps3000_run_block(handle1)

ps3000_set_channel(handle2)
... set up unit 2
ps3000_run_block(handle2)

ready = FALSE
while not ready

ready = ps3000_ready(handle1)
ready &= ps3000_ready(handle2)

ps3000_get_values(handle1)
ps3000_get_values(handle2)

Note 1: It is not possible to synchronise the collection of data between oscilloscopes
that are being used in combination.

24

8 12

24

11

14

Technical information7

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.3.8 Sampling modes

PicoScope 3000 Series PC Oscilloscopes can run in various sampling modes.

Block mode. At the highest sampling rates, the oscilloscope collects data much
faster than a PC can read it. To compensate for this, the oscilloscope stores a block
of data in an internal memory buffer, delaying transfer to the PC until the required
number of data points have been sampled.

Streaming modes. At all but the highest sampling rates, these modes allow
accurately timed data to be transferred back to the PC without gaps. The computer
instructs the oscilloscope to start collecting data. The oscilloscope then transfers
data back to the PC without storing it in its own memory, so the size of the data set
is limited only by the size of the PC's memory. Sampling intervals from less than
one microsecond to 60 seconds are possible. There are two streaming modes:

Compatible streaming mode.
Fast streaming mode.

8

10

11

12

PicoScope 3000 Series Programmer's Guide 8

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.3.8.1 Block mode

In block mode, the computer prompts a PicoScope 3000 Series PC Oscilloscope to
collect a block of data into its internal memory. When the oscilloscope has collected
the whole block, it will signal that it is ready and then transfer the whole block to the
computer's memory through the USB port.

The maximum number of values depends upon the size of the oscilloscope's memory.
A PicoScope 3000 Series scope can sample at a number of different rates. These rates
correspond to the maximum sampling rate divided by 1, 2, 4, 8 and so on.

There is a separate memory buffer for each channel. When a channel is unused, its
memory can be borrowed by the enabled channels. This feature is handled
transparently by the driver.

The driver normally performs a number of setup operations before collecting each
block of data. This can take up to 50 milliseconds. If it is necessary to collect data with
the minimum time interval between blocks, avoid calling setup functions between calls
to ps3000_run_block() , ps3000_ready() , ps3000_stop() and
ps3000_get_values() .

See Using block mode for programming details.

2.3.8.2 Using block mode

This is the general procedure for reading and displaying data in block mode:

1. Open the oscilloscope using ps3000_open_unit().
2. Select channel ranges and AC/DC coupling using ps3000_set_channel().
3. Using ps3000_set_trigger() , set the trigger if required.
4. Using ps3000_get_timebase() , select timebases until the required ns per

sample is located.
5. Start the oscilloscope running using ps3000_run_block().
6. Wait until the oscilloscope says it is ready using ps3000_ready().
7. Transfer the block of data from the oscilloscope using ps3000_get_values() or

ps3000_get_times_and_values().
8. Display the data.
9. Repeat steps 5 to 8.
10. Stop the oscilloscope using ps3000_stop() .

34 36 37

38

8

58

14

18

24

19

34

36

38

39

37

Technical information9

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.3.8.3 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate when working with repetitive
signals. It is controlled by the ps3000_set_trigger() and ps3000_set_ets()
functions.

ETS works by capturing many instances of a repetitive waveform, then combining
them to produce a composite waveform that has a higher effective sampling rate than
the individual instances. The scope uses special circuitry to add a tiny variable delay,
a small fraction of a single sampling interval, to each trigger event. This shifts each
capture slightly in time so that the samples occur at slightly different times relative to
those in the previous capture. The result is a much larger set of samples spaced by a
small fraction of the original sampling interval. The maximum effective sampling
rates that can be achieved with this method are listed in the Specifications table for
your scope device.

Because of the high sensitivity of ETS mode to small time differences, you must set up
the trigger to provide a stable waveform that varies as little as possible from one
capture to the next.

Applicability Available in block mode only.

Available only on the PicoScope 3204, 3205 and 3206 variants.

As ETS will return random time intervals, the
ps3000_get_times_and_values() function must be used. The
ps3000_get_values() function will return FALSE (0).

Not suitable for one-shot (non-repetitive) signals.

2.3.8.4 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode:

1. Open the oscilloscope using ps3000_open_unit().
2. Select channel ranges and AC/DC switches using ps3000_set_channel().
3. Using ps3000_set_trigger() , set the trigger if required.
4. Set ETS mode using ps3000_set_ets().
5. Start the oscilloscope running using ps3000_run_block().
6. Wait until the oscilloscope says it is ready using ps3000_ready().
7. Transfer the block of data from the oscilloscope using

ps3000_get_times_and_values().
8. Display the data.
9. Repeat steps 6 to 8 as necessary.
10. Stop the oscilloscope using ps3000_stop().

24 23

8

39

38

9

14

18

24

23

34

36

39

37

PicoScope 3000 Series Programmer's Guide 10

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.3.8.5 Streaming modes

The streaming modes are alternatives to block mode that can capture data
without gaps between blocks.

In streaming mode, the computer prompts the PicoScope 3000 Series PC Oscilloscope
to start collecting data. The data is then transferred back to the PC without being
stored in oscilloscope memory. Data can be sampled with a period between 1 µs and
60 s, and the maximum number of samples is limited only by the amount of free
space on the PC's hard disk.

There are two streaming modes:

Compatible streaming mode
Fast streaming mode

8

11

12

Technical information11

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.3.8.6 Compatible streaming mode

Compatible streaming mode is a basic streaming mode that works with all scope
units, at speeds from one sample per minute to a thousand samples per second.

The oscilloscope's driver transfers data to a computer program using either normal or
windowed mode. In normal mode, any data collected since the last data transfer
operation is returned in its entirety. Normal mode is useful if the computer program
requires fresh data on every transfer. In windowed mode, a fixed number of samples
is returned, where the oldest samples may have already been returned before.
Windowed mode is useful when the program requires a constant time period of data.

Once the oscilloscope is collecting data in streaming mode, any setup changes (for
example, changing a channel range or AC/DC setting) will cause a restart of the data
stream. The driver can buffer up to 32 K samples of data per channel, but the user
must ensure that the ps3000_get_values() function is called frequently enough to
avoid buffer overrun.

See Using compatible streaming mode for programming details.

Applicability Does not support triggering .

The ps3000_get_times_and_values() function will always
return FALSE (0) in streaming mode.

2.3.8.7 Using compatible streaming mode

This is the general procedure for reading and displaying data in compatible streaming
mode :

1. Open the oscilloscope using ps3000_open_unit().
2. Select channel ranges and AC/DC switches using ps3000_set_channel().
3. Start the oscilloscope running using ps3000_run_streaming().
4. Transfer the block of data from the oscilloscope using ps3000_get_values().
5. Display the data.
6. Repeat steps 4 and 5 as necessary.
7. Stop the oscilloscope using ps3000_stop().

10

38

11

6

39

11

14

18

35

38

37

PicoScope 3000 Series Programmer's Guide 12

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.3.8.8 Fast streaming mode

Fast streaming mode is an advanced streaming mode that can transfer data at
speeds of a million samples per second or more, depending on the computer's
performance. This makes it suitable for high-speed data acquisition, allowing you
to capture very long data sets limited only by the computer's memory.

Fast streaming mode also provides data aggregation, which allows your application to
zoom in and out of the data with the minimum of effort.

Applicability Works with triggering.

See Using fast streaming mode for programming details.

2.3.8.9 Using fast streaming mode

This is the general procedure for reading and displaying data in fast streaming mode:

1. Open the oscilloscope using ps3000_open_unit().
2. Select channel ranges and AC/DC switches using ps3000_set_channel().
3. Set the trigger using ps3000_set_trigger().
4. Start the oscilloscope running using ps3000_run_streaming_ns().
5. Get a block of data from the oscilloscope using

ps3000_get_streaming_last_values().
6. Display or process the data.
7. If required, check for overview buffer overruns by calling

ps3000_overview_buffer_status().
8. Repeat steps 5 to 7 as necessary or until auto_stop is TRUE.
9. Stop fast streaming using ps3000_stop().
10. Retrieve any part of the data at any time scale by calling

ps3000_get_streaming_values().
11. If you require raw data, retrieve it by calling

ps3000_get_streaming_values_no_aggregation().
12. Repeat steps 10 to 11 as necessary.
13. Close the oscilloscope by calling ps3000_close_unit().

10

6

12

12

14

18

24

41

42

50

37

45

47

52

Technical information13

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4 Functions

The PicoScope 3000 Series API exports the following functions for you to use in your
own applications:

ps3000_open_unit
ps3000_open_unit_async
ps3000_open_unit_progress
ps3000_get_unit_info
ps3000_set_channel
ps3000_get_timebase
ps3000_flash_led
ps3000_set_trigger
ps3000_set_trigger2
ps3000SetAdvTriggerChannelProperties
ps3000SetAdvTriggerChannelConditions
ps3000SetAdvTriggerChannelDirections
ps3000SetPulseWidthQualifier
ps3000SetAdvTriggerDelay
ps3000_run_block
ps3000_run_streaming
ps3000_ready
ps3000_stop
ps3000_get_values
ps3000_get_times_and_values
ps3000_run_streaming_ns
ps3000_get_streaming_last_values
ps3000_get_streaming_values
ps3000_get_streaming_values_no_aggregation
ps3000_save_streaming_data
ps3000_overview_buffer_status
ps3000_close_unit

The following user-defined functions are also described:

Callback function to copy data to buffer
Callback function to save data

14

15

16

17

18

19

20

24

25

26

28

30

31

33

34

35

36

37

38

39

41

42

45

47

49

50

52

43

51

PicoScope 3000 Series Programmer's Guide 14

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.1 ps3000_open_unit

short ps3000_open_unit (
void)

This function opens a PicoScope 3000 Series PC Oscilloscope. The driver can support
up to four oscilloscopes.

Applicability All modes.

Arguments None.

Returns -1 if the oscilloscope fails to open,

0 if no oscilloscope is found,

>0 (device handle) if the device opened

Technical information15

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.2 ps3000_open_unit_async

short ps3000_open_unit_async (
void)

This function opens a PicoScope 3000 Series PC Oscilloscope without waiting for the
operation to finish. You can find out when it has finished by periodically calling
ps3000_open_unit_progress() until that function returns a non-zero value.

The driver can support up to four oscilloscopes.

Applicability All modes.

Arguments None.

Returns 0 if there is a previous open operation in progress
1 if the call has successfully initiated an open operation

16

PicoScope 3000 Series Programmer's Guide 16

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.3 ps3000_open_unit_progress

short ps3000_open_unit_progress (
short *handle,
short *progress_percent)

This function checks on the progress of ps3000_open_unit_async() .

Applicability All modes.

Use only with ps3000_open_unit_async() .

Arguments handle, a pointer to a location in which the function will store the

handle of the opened device.
0 if no unit is found or the unit fails to open,

handle of device (valid only if function returns TRUE)

progress_percent, a pointer to an estimate of the progress

towards opening the unit, from 0 to 100. 100 implies that the
operation is complete.

Returns 1 if the driver successfully opens the unit

0 if opening still in progress

-1 if the unit failed to open or was not found

15

15

Technical information17

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.4 ps3000_get_unit_info

short ps3000_get_unit_info (
short handle,
char * string,
short string_length,
short line)

This function writes oscilloscope information to a character string. If the oscilloscope
fails to open, only line types 0 and 6 are available to explain why the last open unit

call failed.

Applicability All modes.

Arguments handle, the handle to the device from which info is required. If

an invalid handle is passed, the error code from the last unit that
failed to open is returned.

string, a pointer to the character string buffer in the calling

function where the unit information string (selected with line) will
be stored. If a null pointer is passed, no information will be
written.

string_length, the length of the character string buffer. If the

string is not long enough to accept all of the information, only the
first string_length characters are returned.

line, an enumerated type specifying what information is

required from the driver.

Returns The length of the string written to the character string buffer,
string, by the function

0 if one of the parameters is out of range, or a null pointer is
passed for string

line String returned Example

0 PS3000_DRIVER_VERSION The version number of the DLL
used by the oscilloscope driver.

"1, 0, 0,
2"

1 PS3000_USB_VERSION The type of USB connection that
is being used to connect the
oscilloscope to the computer.

"1.1" or
"2.0"

2 PS3000_HARDWARE_VERSION The hardware version of the
attached oscilloscope.

"1"

3 PS3000_VARIANT_INFO The variant of PicoScope 3000
PC Oscilloscope that is attached
to the computer.

"3425"

4 PS3000_BATCH_AND_SERIAL The batch and serial number of
the oscilloscope.

"CMY66/052"

5 PS3000_CAL_DATE The calibration date of the
oscilloscope.

"21Oct07"

6 PS3000_ERROR_CODE One of the Error codes . "4"57

PicoScope 3000 Series Programmer's Guide 18

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.5 ps3000_set_channel

short ps3000_set_channel (
short handle,
short channel,
short enabled,
short dc,
short range)

Specifies if a channel is to be enabled, the AC/DC coupling mode and the input range.

Applicability All modes

Arguments handle, the handle to the required device.

channel, an enumerated type. Use PS3000_CHANNEL_A (0),
PS3000_CHANNEL_B (1), PS3000_CHANNEL_C (2) or

PS3000_CHANNEL_D (3). Channels C and D are not available on

all models.

enabled, specifies if the channel is active: TRUE=active, FALSE
=inactive.

dc, specifies the AC/DC coupling mode: TRUE=DC, FALSE=AC.

range, a code between 1 and 10. See the table below, but note

that each scope variant supports only a subset of these ranges.

Returns 0 if unsuccessful, or if one or more of the arguments are out of

range
1 if successful

Code Enumeration Range

1 PS3000_20MV ±20 mV

2 PS3000_50MV ±50 mV

3 PS3000_100MV ±100 mV

4 PS3000_200MV ±200 mV

5 PS3000_500MV ±500 mV

6 PS3000_1V ±1 V

7 PS3000_2V ±2 V

8 PS3000_5V ±5 V

9 PS3000_10V ±10 V

10 PS3000_20V ±20 V

11 PS3000_50V ±50 V

12 PS3000_100V ±100 V

13 PS3000_200V ±200 V

14 PS3000_400V ±400 V

Technical information19

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.6 ps3000_get_timebase

short ps3000_get_timebase (
short handle,
short timebase,
long no_of_samples,
long * time_interval,
short * time_units,
short oversample,
long * max_samples)

This function discovers which timebases are available on the oscilloscope. You should
set up the channels using ps3000_set_channel() and, if required, ETS mode
using ps3000_set_ets() first.

Applicability All modes.

Arguments handle, the handle of the required device.

timebase, a code between 0 and the maximum timebase

(dependent on variant). Timebase 0 is the fastest timebase,
timebase 1 is twice the time per sample of timebase 0, timebase 2
is four times, etc.

no_of_samples, the number of samples required. This value is

used to calculate the most suitable time unit to use.

time_interval, a pointer to the time interval, in nanoseconds,

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

time_units, a pointer to the most suitable units that the results

should be measured in. This value should also be passed when
calling ps3000_get_times_and_values() . If a null pointer is
passed, nothing will be written here.

oversample, the amount of oversample required. An

oversample of 4 would quadruple the time interval and quarter the
maximum samples. At the same time it would increase the
effective resolution by one bit. See Oversampling for more
details.

max_samples, a pointer to the maximum samples available. The

maximum samples may vary depending on the number of
channels enabled, the timebase chosen and the oversample
selected. If this pointer is null, nothing will be written here.

Returns 1 if all parameters are in range

0 on error

18 9

23

39

59

PicoScope 3000 Series Programmer's Guide 20

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.7 ps3000_flash_led

short ps3000_flash_led (
short handle)

Flashes the LED on the front of the oscilloscope three times and returns within one
second.

Applicability All modes.

Arguments handle, the handle of the PicoScope 3000 Series PC

Oscilloscope.

Returns 1 if a valid handle is passed

0 if handle is invalid

Technical information21

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.8 ps3000_set_siggen

long ps3000_set_siggen (
short handle,
short wave_type,
long start_frequency,
long stop_frequency,
float increment,
short dwell_time,
short repeat,
short dual_slope)

This function is used to enable or disable the signal generator and sweep
functions.

Applicability Sweep functions are not available if the oscilloscope is in
streaming mode .
The signal generator is available only on the PicoScope 3204,
3205 and 3206 PC Oscilloscope variants. See remarks below for
more information.

Arguments handle, the handle of the required device.

wave_type, the type of wave. Choose PS3000_SQUARE (0),
PS3000_TRIANGLE (1) or PS3000_SINE (2). This argument

has no effect if used with the PicoScope 3204 variant.

start_frequency, the required frequency, in the range 0 < freq

< 1 MHz, to start the sweep or the frequency generated in a non-
sweep mode. 0 switches the signal generator off.

stop_frequency, the required stop frequency of the sweep, in

the range 0 < freq < 1 MHz but not necessarily greater than
start_frequency. If the start and stop frequencies are the

same, the signal generator will be run with a constant frequency.
This argument has no effect if used with the PicoScope 3204
variant, or if run in streaming mode.

increment, the size of the steps to increment or decrement the

frequency by in a sweep mode. It must always be positive. The
start and stop frequencies determine whether to increment or
decrement. It must be a frequency in the range 0.1 Hz <
increment < |stop_frequency - start_frequency|. It is

not used in a non-sweep mode. It has no effect if used with the
PicoScope 3204 variant.

dwell_time, the time, in milliseconds, to wait before increasing

the frequency by increment in a sweep mode. This is unused in a

non-sweep mode. This argument has no effect if used with the
PicoScope 3204 variant.

repeat, if TRUE restarts the sweep when the stop_frequency
is reached, if FALSE continues indefinitely at stop_frequency
when it is reached. This argument has no effect if used with the
PicoScope 3204 variant.

dual_slope, if repeat is TRUE this specifies what to do at the

5

10

10

PicoScope 3000 Series Programmer's Guide 22

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

stop_frequency. TRUE will sweep back towards the

start_frequency, FALSE will restart the sweep from

start_frequency. This argument has no effect if used with the

PicoScope 3204 variant.

Returns The actual frequency or start frequency, in hertz, that is generated
0 if one of the parameters is not in range

Remarks

The PicoScope 3204 variant has a simple 1 kHz square wave signal generator for
scope probe calibration. With this variant, therefore, only two arguments of this
function have any effect:

To switch the square wave on, use a valid handle and set start_frequency to a

non-zero value. To switch the square wave off, use a valid handle and set

start_frequency to 0.

Technical information23

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.9 ps3000_set_ets

long ps3000_set_ets (
short handle,
short mode,
short ets_cycles,
short ets_interleave)

This function is used to enable or disable ETS (equivalent time sampling) and to set
the ETS parameters.

Applicability ETS is available only on the PicoScope 3204, 3205 and 3206
variants.

Arguments handle, the handle of the required device.

mode,
PS3000_ETS_OFF (0) - disables ETS.

PS3000_ETS_FAST (1) - enables ETS and provides

ets_cycles cycles of data, which may contain data from

previously returned cycles,

PS3000_ETS_SLOW (2) - enables ETS and provides fresh data

every ets_cycles cycles. PS3000_ETS_SLOW takes longer to

provide each data set, but the data sets are more stable and
unique.

ets_cycles, specifies the number of cycles to store: the

computer can then select ets_interleave cycles to give the

most uniform spread of samples. ets_cycles should be between

two and five times the value of ets_interleave.

ets_interleave, specifies the number of ETS interleaves to use.

If the sample time is 20 ns and the interleave 10, the approximate
time per sample will be 2 ns.

Returns The effective sample time in picoseconds, if ETS is enabled
0 if ETS is disabled or one of the parameters is out of range

9

9

PicoScope 3000 Series Programmer's Guide 24

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.10 ps3000_set_trigger

short ps3000_set_trigger (
short handle,
short source,
short threshold,
short direction,
short delay,
short auto_trigger_ms)

This function is used to enable or disable triggering and its parameters.

Applicability Triggering is available in block mode and fast streaming mode
.

Arguments handle, the handle to the required device.

source, specifies where to look for a trigger. Use
PS3000_CHANNEL_A (0), PS3000_CHANNEL_B (1),
PS3000_CHANNEL_C (2), PS3000_CHANNEL_D (3),
PS3000_EXTERNAL(4) or PS3000_NONE(5). The number of

channels available will depend on the scope variant.

threshold, the threshold for the trigger event. This is scaled in

16-bit ADC counts at the currently selected range. If an external
trigger is enabled the range is fixed at +/-20V.

direction, use PS3000_RISING (0) or PS3000_FALLING
(1).

delay, specifies the delay, as a percentage of the requested

number of data points, between the trigger event and the start of
the block. It should be in the range -100% to +100%. Thus, 0%
means that the trigger event is at the first data value in the block,
and -50% means that it is in the middle of the block. If you wish
to specify the delay as a floating-point value, use
ps3000_set_trigger2() instead.

auto_trigger_ms, the delay in milliseconds after which the

oscilloscope will collect samples if no trigger event occurs. If this is
set to zero the oscilloscope will wait for a trigger indefinitely.

Returns 0 if one of the parameters is out of range

1 if successful

58

12

25

Technical information25

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.11 ps3000_set_trigger2

short ps3000_set_trigger2 (
short handle,
short source,
short threshold,
short direction,
float delay,
short auto_trigger_ms)

This function is used to enable or disable triggering and its parameters. It has the
same behaviour as ps3000_set_trigger() , except that the delay parameter is a

floating-point value.

Applicability Triggering is available in block mode and fast streaming mode
 only.

Arguments handle, the handle of the required device.

source, specifies where to look for a trigger. Use
PS3000_CHANNEL_A (0), PS3000_CHANNEL_B (1),
PS3000_CHANNEL_C (2), PS3000_CHANNEL_D (3),
PS3000_EXTERNAL(4) or PS3000_NONE (5). Channels C, D

and External are not available on all models.

threshold, the threshold for the trigger event. This is scaled in

16-bit ADC counts at the currently selected range. If an external
trigger is enabled the range is fixed at ±20 V.

direction, use PS3000_RISING (0) or PS3000_FALLING
(1).

delay, specifies the delay, as a percentage of the requested

number of data points, between the trigger event and the start of
the block. It should be in the range -100% to +100%. Thus, 0%
means that the trigger event is at the first data value in the block,
and -50% means that it is in the middle of the block. If you wish
to specify the delay as an integer, use ps3000_set_trigger()
instead.

auto_trigger_ms, the delay in milliseconds after which the

oscilloscope will collect samples if no trigger event occurs. If this
is set to zero the oscilloscope will wait for a trigger indefinitely.

Returns 0 if one of the parameters is out of range
1 if successful

24

58

12

24

PicoScope 3000 Series Programmer's Guide 26

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.12 ps3000SetAdvTriggerChannelProperties

short ps3000SetAdvTriggerChannelProperties(
short handle,
TRIGGER_CHANNEL_PROPERTIES * channelProperties,
short nChannelProperties,
long autoTriggerMilliseconds);

This function is used to enable or disable triggering and set its parameters.

Applicability All modes.

Arguments handle, the handle of the required device.

channelProperties, a pointer to a

TRIGGER_CHANNEL_PROPERTIES structure describing the

requested properties. If NULL, triggering is switched off.

nChannelProperties, should be set to 1 if

channelProperties is non-null, otherwise 0.

autoTriggerMilliseconds, the time in milliseconds for which

the scope device will wait before collecting data if no trigger event
occurs. If this is set to zero, the scope device will wait indefinitely
for a trigger.

Returns 0 if unsuccessful, or if one or more of the arguments are out of

range
1 if successful

Technical information27

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.12.1 TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps3000SetAdvTriggerChannelProperties() in
the channelProperties argument to specify the trigger mechanism, and is defined

as follows: -

typedef struct tTriggerChannelProperties
{

short thresholdMajor;
short thresholdMinor;
unsigned short hysteresis;
short channel;
THRESHOLD_MODE thresholdMode;

} TRIGGER_CHANNEL_PROPERTIES;

Applicability All modes.

Members thresholdMajor, the upper threshold at which the trigger event

is to take place. This is scaled in 16-bit ADC counts at the
currently selected range for that channel.

thresholdMinor, the lower threshold at which the trigger event

is to take place. This is scaled in 16-bit ADC counts at the
currently selected range for that channel.

hysteresis, the hysteresis that the trigger has to exceed before

it will fire. It is scaled in 16-bit counts.

channel, the channel to which the properties apply.

thresholdMode, either a level or window trigger. Use one of

these constants: -
LEVEL (0)
WINDOW(1)

26

PicoScope 3000 Series Programmer's Guide 28

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.13 ps3000SetAdvTriggerChannelConditions

short ps3000SetAdvTriggerChannelConditions(
short handle,
TRIGGER_CONDITIONS * conditions,
short nConditions);

This function sets up trigger conditions on the scope's inputs. The trigger is set up by
defining a TRIGGER_CONDITIONS structure. Each structure is the AND of the states of

one scope input.

Applicability All modes.

Arguments handle, the handle of the required device.

conditions, a pointer to a TRIGGER_CONDITIONS structure

specifying the conditions that should be applied to the current
trigger channel. If NULL, triggering is switched off.

nConditions, should be set to 1 if conditions is non-null,

otherwise 0.

Returns 0 if unsuccessful, or if one or more of the arguments are out of

range
1 if successful

Technical information29

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.13.1 TRIGGER_CONDITIONS structure

A structure of this type is passed to ps3000SetAdvTriggerChannelConditions() in
the conditions argument to specify the trigger conditions, and is defined as

follows: -

typedef struct tTriggerConditions
{
 TRIGGER_STATE channelA;
 TRIGGER_STATE channelB;
 TRIGGER_STATE channelC;
 TRIGGER_STATE channelD;
 TRIGGER_STATE external;
 TRIGGER_STATE pulseWidthQualifier;
} TRIGGER_CONDITIONS;

Applicability All modes

Members channelA, channelB, channelC, channelD,
pulseWidthQualifier: the type of condition that should be

applied to each channel. Use these constants: -

CONDITION_DONT_CARE (0)
CONDITION_TRUE (1)
CONDITION_FALSE (2)

external, not used

Remarks

The channels that are set to CONDITION_TRUE or CONDITION_FALSE must all meet

their conditions simultaneously to produce a trigger. Channels set to
CONDITION_DONT_CARE are ignored.

The oscilloscope can only use a single channel for the trigger source. Therefore you
must define CONDITION_TRUE or CONDITION_FALSE, and the pulse width qualifier

if required, for only one channel at a time.

28

PicoScope 3000 Series Programmer's Guide 30

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.14 ps3000SetAdvTriggerChannelDirections

short ps3000SetAdvTriggerChannelDirections(
short handle,
THRESHOLD_DIRECTION channelA,
THRESHOLD_DIRECTION channelB,
THRESHOLD_DIRECTION channelC,
THRESHOLD_DIRECTION channelD,
THRESHOLD_DIRECTION ext);

This function sets the direction of the trigger for each channel.

Applicability All modes.

Arguments handle, the handle of the required device

channelA, channelB, channelC, channelD, all specify the

direction in which the signal must pass through the threshold to
activate the trigger. The allowable values for a
THRESHOLD_DIRECTION variable are listed in the table below.

ext, not used

Returns 0 if unsuccessful, or if one or more of the arguments are out of

range
1 if successful

THRESHOLD_DIRECTION constants

ABOVE for gated triggers: above a threshold
BELOW for gated triggers: below a threshold
RISING for threshold triggers: rising edge
FALLING for threshold triggers: falling edge
RISING_OR_FALLING for threshold triggers: either edge
INSIDE for window-qualified triggers: inside window
OUTSIDE for window-qualified triggers: outside window
ENTER for window triggers: entering the window
EXIT for window triggers: leaving the window
ENTER_OR_EXIT for window triggers: either entering or leaving the window
NONE no trigger

Technical information31

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.15 ps3000SetPulseWidthQualifier

short ps3000SetPulseWidthQualifier(
short handle,
PNQ_CONDITIONS * conditions,
short nConditions,
THRESHOLD_DIRECTION direction,
unsigned long lower,
unsigned long upper,
PULSE_WIDTH_TYPE type);

This function sets up pulse width qualification, which can be used on its own for pulse
width triggering or combined with other triggering to produce more complex triggers.
The pulse width qualifier is set by defining a conditions structure.

Applicability All modes

Arguments handle, the handle of the required device

conditions, a pointer to a PWQ_CONDITIONS structure

specifying the conditions that should be applied to the trigger
channel. If conditions is NULL then the pulse width qualifier is

not used.

nConditions, should be set to 1 if conditions is non-null,

otherwise 0.

direction, the direction of the signal required to trigger the

pulse.

lower, the lower limit of the pulse width counter.

upper, the upper limit of the pulse width counter. This

parameter is used only when the type is set to

PW_TYPE_IN_RANGE or PW_TYPE_OUT_OF_RANGE.

type, the pulse width type, one of these constants: -

PW_TYPE_NONE do not use the pulse width qualifier
PW_TYPE_LESS_THAN pulse width less than lower
PW_TYPE_GREATER_THAN pulse width greater than lower
PW_TYPE_IN_RANGE pulse width between lower and

upper
PW_TYPE_OUT_OF_RANGE pulse width not between lower and

upper

Returns 0 if unsuccessful, or if one or more of the arguments are out of

range
1 if successful

PicoScope 3000 Series Programmer's Guide 32

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.15.1 PWQ_CONDITIONS structure

A structure of this type is passed to ps3000SetPulseWidthQualifier() in the
conditions argument to specify the pulse-width qualifier conditions, and is defined

as follows: -

typedef struct tPwqConditions
{
 TRIGGER_STATE channelA;
 TRIGGER_STATE channelB;
 TRIGGER_STATE channelC;
 TRIGGER_STATE channelD;
 TRIGGER_STATE external;
} PWQ_CONDITIONS;

Applicability Pulse-width qualified triggering

Members channelA, channelB, channelC, channelD: the type of

condition that should be applied to each channel. Use these
constants: -

CONDITION_DONT_CARE (0)
CONDITION_TRUE (1)
CONDITION_FALSE (2)

external, not used

31

Technical information33

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.16 ps3000SetAdvTriggerDelay

short ps3000SetAdvTriggerDelay(
short handle,
unsigned long delay,
float preTriggerDelay);

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability All modes

Arguments handle, the handle of the required device

delay, specifies the delay, as a percentage of the requested

number of data points, between the trigger event and the start of
the block. It should be in the range -100% to +100%. For
example, 0% means that the trigger event is at the first data
value in the block, and -50% means that it is in the middle of the
block.

Returns 0 if unsuccessful, or if one or more of the arguments are out of

range
1 if successful

PicoScope 3000 Series Programmer's Guide 34

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.17 ps3000_run_block

short ps3000_run_block (
short handle,
long no_of_samples,
short timebase,
short oversample,
long * time_indisposed_ms)

This function tells the oscilloscope to start collecting data in block mode .

Applicability Block mode only.

Arguments handle, the handle to the required device.

no_of_samples, the number of samples to return.

timebase, a code between 0 and the maximum timebase

available (consult the driver header file). Timebase 0 gives the
maximum sample rate available, timebase 1 selects a sample rate
half as fast, timebase 2 is half as fast again and so on. For the
maximum sample rate, see the specifications for your scope
device. Note that the number of channels enabled may affect the
availability of the fastest timebases.

oversample, the oversampling factor, a number between 1 and

256. See Oversampling for details.

time_indisposed_ms, a pointer to the approximate time, in

milliseconds, over which the ADC will collect data. If a trigger is
set, it is the amount of time the ADC takes to collect a block of
data after a trigger event, calculated as sample interval x number
of points required. Note: The actual time may differ from computer
to computer, depending on how fast the computer can respond to
I/O requests.

Returns 0 if one of the parameters is out of range

1 if successful

8

8

5

Technical information35

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.18 ps3000_run_streaming

short ps3000_run_streaming (
short handle,
short sample_interval_ms,
long max_samples,
short windowed)

This function tells the oscilloscope to start collecting data in compatible streaming
mode . If this function is called when a trigger has been enabled, the trigger
settings will be ignored.

For faster streaming with the PicoScope 3224, 3424 and 3425 variants, use
ps3000_run_streaming_ns() instead.

Applicability Compatible streaming mode only.

Arguments handle, the handle to the required device.

sample_interval_ms, the time interval, in milliseconds,

between data points. This can be no shorter than 1 ms.

max_samples, the maximum number of samples that the driver

is to store. This can be no greater than 60 000. It is the caller's
responsibility to retrieve data before the oldest values are
overwritten.

windowed, if this is 0, only the values taken since the last call to

ps3000_get_values() are returned. If this is 1, the number of
values requested by ps3000_get_values() are returned, even if
they have already been read by ps3000_get_values() .

Returns 1 if streaming has been enabled correctly,

0 if a problem occurred or a value was out of range.

11

41

11

38

38

38

PicoScope 3000 Series Programmer's Guide 36

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.19 ps3000_ready

short ps3000_ready (
short handle)

This function checks to see if the oscilloscope has finished the last data collection
operation.

Applicability Block mode only. Does nothing if the oscilloscope is in
streaming mode .

Arguments handle, the handle to the required device.

Returns 1 if ready. The oscilloscope has collected a complete block of data

or the auto trigger timeout has been reached.
0 if not ready. An invalid handle is passed, or the oscilloscope is

in streaming mode, or the scope is still collecting data in block
mode.
-1 if device not attached. The endpoint transfer fails, indicating

that the unit may well have been unplugged.

8

10

Technical information37

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.20 ps3000_stop

short ps3000_stop (
short handle)

Call this function to stop the oscilloscope sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

Applicability All modes.

Arguments handle, the handle to the required device.

Returns 0 if an invalid handle is passed

1 if successful

PicoScope 3000 Series Programmer's Guide 38

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.21 ps3000_get_values

long ps3000_get_values (
short handle
short * buffer_a,
short * buffer_b,
short * buffer_c,
short * buffer_d,
short * overflow,
long no_of_values)

This function is used to get values in compatible streaming mode after calling
ps3000_run_streaming() , or in block mode after calling ps3000_run_block() .

Applicability Compatible streaming mode and block mode only.

Does nothing if ETS triggering is enabled.

Do not use in fast streaming mode - use
ps3000_get_streaming_last_values() instead.

Arguments handle, the handle of the required device.

buffer_a, buffer_b, buffer_c, buffer_d, pointers to the

buffers that receive data from the specified channels (A, B, C or
D). A pointer is unused if the oscilloscope is not collecting data
from that channel. If a pointer is NULL, nothing will be written to
it.

overflow, a bit pattern indicating whether an overflow has

occurred and, if so, on which channel. Bit 0 is the least significant
bit. The bit assignments are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D C B A D C B A

common-mode
overflow

differential
overflow*

*3425 variant only

no_of_values, the number of data points to return. In

streaming mode, this is the maximum number of values to return.

Returns The actual number of data values per channel returned, which
may be less than no_of_values if streaming

FALSE if one of the parameters is out of range

11

35 8 34

11 8

9

12

42

Technical information39

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.22 ps3000_get_times_and_values

long ps3000_get_times_and_values (
short handle
long * times,
short * buffer_a,
short * buffer_b,
short * buffer_c,
short * buffer_d,
short * overflow,
short time_units,
long no_of_values)

This function is used to get values and times in block mode after calling
ps3000_run_block() .

8

34

PicoScope 3000 Series Programmer's Guide 40

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

Applicability Block mode only. It will not return any valid times if the
oscilloscope is in streaming mode .

Essential for ETS operation.

Arguments handle, the handle to the required device.

times, a pointer to the buffer for the times in time_units.

Each time is the interval between the trigger event and the
corresponding sample. Times before the trigger event are
negative, and times after the trigger event are positive.

buffer_a, buffer_b, buffer_c, buffer_d, pointers to the

buffers that receive data from the specified channels (A, B, C or
D). A pointer is unused if the oscilloscope is not collecting data
from that channel. If a pointer is NULL, nothing will be written to
it.

overflow, a bit pattern indicating whether an overflow has

occurred and, if so, on which channel. Bit 0 is the LSB. The bit
assignments are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D C B A D C B A

common-mode
overflow

differential
overflow*

*3425 variant only

time_units, which can be one of: PS3000_FS (0,

femtoseconds), PS3000_PS (1, picoseconds), PS3000_NS (2,

nanoseconds, default), PS3000_US (3, microseconds),

PS3000_MS (4, milliseconds) or PS3000_S (5, seconds).

no_of_values, the number of data points to return. In

streaming mode, this is the maximum number of values to return.

Returns The actual number of data values per channel returned, which
may be less than no_of_values if streaming

0 if one or more of the parameters are out of range or if the times

will overflow with the time_units requested. Use

ps3000_get_timebase() to acquire the most suitable
time_units.

8

11

9

19

Technical information41

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.23 ps3000_run_streaming_ns

short ps3000_run_streaming_ns (
short handle,
unsigned long sample_interval,
PS3000_TIME_UNITS time_units,
unsigned long max_samples,
short auto_stop,
unsigned long noOfSamplesPerAggregate,
unsigned long overview_buffer_size)

This function tells the scope unit to start collecting data in fast streaming mode .
The function returns immediately without waiting for data to be captured. After
calling this function, you should next call ps3000_get_streaming_last_values() to
copy the data to your application's buffer.

Applicability Fast streaming mode only.

Arguments handle, the handle to the required device.

sample_interval, the time interval, in time_units, between

data points.

time_units, the units in which sample_interval is

measured.

max_samples, the maximum number of samples that the driver

should store from each channel. Your computer must have
enough physical memory for this many samples, multiplied by the
number of channels in use, multiplied by the number of bytes per
sample.

auto_stop, a Boolean to indicate whether streaming should stop

automatically when max_samples is reached. Set to any non-

zero value for TRUE.

noOfSamplesPerAggregate, the number of incoming samples

that the driver will merge together (or aggregate: see aggregation
) to create each value pair passed to the application. The value

must be between 1 and max_samples.

overview_buffer_size, the size of the overview buffers,

temporary buffers used by the driver to store data before passing
it to your application. You can check for overview buffer overruns
using the ps3000_overview_buffer_status() function and adjust
the overview buffer size if necessary. We recommend using an
initial value of 15,000 samples.

Returns 1 if streaming has been enabled correctly,

0 if a problem occurred or a value was out of range

12

42

12

58

50

PicoScope 3000 Series Programmer's Guide 42

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.24 ps3000_get_streaming_last_values

short ps3000_get_streaming_last_values (
short handle
GetOverviewBuffersMaxMin lpGetOverviewBuffersMaxMin)

This function is used to collect the next block of values while fast streaming is
running. You must have called ps3000_run_streaming_ns() beforehand to set up
fast streaming.

Applicability Fast streaming mode only.

PicoScope 3224, 3424 and 3425 variants only.

Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments handle, the handle of the required device.

lpGetOverviewBuffersMaxMin, a pointer to the callback

function in your application that receives data from the
streaming driver.

Returns The actual number of data values returned per channel, which may
be less than max_samples if streaming, where max_samples is a

parameter passed to ps3000_run_streaming_ns().

FALSE if one of the parameters is out of range

12

41

12

9

43

41

Technical information43

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.25 Callback function to copy data to buffer

void my_get_overview_buffers (
short ** overviewBuffers,
short overflow,
unsigned long triggeredAt,
short triggered,
short auto_stop,
unsigned long nValues)

This is the callback function in your application that receives data from the driver in
fast streaming mode. You pass a pointer to this function to
ps3000_get_streaming_last_values() , which then calls it back when the data is
ready. Your callback function should do nothing more than copy the data to another
buffer within your application. To maintain the best application performance, the
function should return as quickly as possible without attempting to process or display
the data.

The function name my_get_overview_buffers() is just for illustration. When you

write this function, you can give it any name you wish. The PicoScope driver does not
need to know your function's name, as it refers to it only by the address that you pass
to ps3000_get_streaming_last_values() .

For an example of a suitable callback function, see the C++ sample code included
in your PicoScope installation.

12

42

42

54

PicoScope 3000 Series Programmer's Guide 44

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

Applicability Fast streaming mode only.
PicoScope 3224, 3424 and 3425 variants only.
Not compatible with ETS triggering - has no effect in ETS mode.

Arguments overviewBuffers, a pointer to a location where

ps3000_get_streaming_last_values() will store a pointer to its
overview buffers that contain the sampled data. The driver
creates the overview buffers when you call
ps3000_run_streaming_ns() to start fast streaming.

overflow, a bit field that indicates whether there has been a

voltage overflow and, if so, on which channel. The bit
assignments are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D C B A D C B A

common-mode
overflow

differential
overflow*

*3425 variant only

triggeredAt, an index into the overview buffers, indicating the

sample at the trigger event. Valid only when triggered is TRUE.

triggered, a Boolean indicating whether a trigger event has

occurred and triggeredAt is valid. Any non-zero value

signifies TRUE.

auto_stop, a Boolean indicating whether streaming data

capture has automatically stopped. Any non-zero value signifies
TRUE.

nValues, the number of values in each overview buffer.

Returns nothing

12

9

42

41

Technical information45

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.26 ps3000_get_streaming_values

unsigned long ps3000_get_streaming_values (
short handle,
double * start_time,
short * pbuffer_a_max,
short * pbuffer_a_min,
short * pbuffer_b_max,
short * pbuffer_b_min,
short * pbuffer_c_max,
short * pbuffer_c_min,
short * pbuffer_d_max,
short * pbuffer_d_min,
short * overflow,
unsigned long * triggerAt,
short * triggered,
unsigned long no_of_values,
unsigned long noOfSamplesPerAggregate)

This function is used after the driver has finished collecting data in fast streaming
mode. It allows you to retrieve data with different aggregation ratios, and thus
zoom in to and out of any region of the data.

Before calling this function, first capture some data in fast streaming mode, stop fast
streaming by calling ps3000_stop(), then allocate sufficient buffer space to receive
the requested data. The function will store the data in your buffer with values in the
range PS3000_MIN_VALUE to PS3000_MAX_VALUE. The special value

PS3000_LOST_DATA is stored in the buffer when data could not be collected because

of a buffer overrun. (See Scaling for more on data values.)

Each sample of aggregated data is created by processing a block of raw samples. The
aggregated sample is stored as a pair of values: the minimum and the maximum
values of the block of raw samples.

12 58

37

5

PicoScope 3000 Series Programmer's Guide 46

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

Applicability Fast streaming mode only.
PicoScope 3224, 3424 and 3425 variants only.
Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments handle, the handle of the required device.

start_time, the time in nanoseconds, relative to the trigger

point, of the first data sample required.

pbuffer_a_max, pbuffer_a_min, pointers to two buffers into

which the function will write the maximum and minimum
aggregated sample values from channel A.

pbuffer_b_max, pbuffer_b_min, pbuffer_c_max,
pbuffer_c_min, pbuffer_d_max, pbuffer_d_min, as the

two parameters above but for channels B, C and D

overflow, where the function will write a bit field indicating

whether the voltage on each of the input channels has overflowed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D C B A D C B A

common-mode
overflow

differential
overflow*

*3425 variant only

triggerAt, a pointer to where the function will write an index

into the buffers. The index is the number of the sample at the
trigger reference point. Valid only when triggered is TRUE.

triggered, a pointer to a Boolean indicating that a trigger has

occurred and triggerAt is valid.

no_of_values, the number of values required.

noOfSamplesPerAggregate, the number of samples that the

driver should combine to form each aggregated value pair. The
pair consists of the maximum and minimum values of all the
samples that were aggregated. For channel A, the minimum value
is stored in the buffer pointed to by pbuffer_a_min and the

maximum value in the buffer pointed to by pbuffer_a_max.

Returns the number of values written to each buffer, if successful
0 if a parameter was out of range

12

9

Technical information47

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.27 ps3000_get_streaming_values_no_aggregation

unsigned long ps3000_get_streaming_values_no_aggregation (
short handle,
double * start_time,
short * pbuffer_a,
short * pbuffer_b,
short * pbuffer_c,
short * pbuffer_d,
short * overflow,
unsigned long * triggerAt,
short * trigger,
unsigned long no_of_values)

This function retrieves raw streaming data from the driver's data store after fast
streaming has stopped.

Before calling the function, capture some data using fast streaming, stop streaming
using ps3000_stop(), and then allocate sufficient buffer space to receive the
requested data. The function will store the data in your buffer with values in the
range PS3000_MIN_VALUE to PS3000_MAX_VALUE. The special value

PS3000_LOST_DATA is stored in the buffer when data could not be collected because

of a buffer overrun. (See Scaling for more details of data values.)

12

37

5

PicoScope 3000 Series Programmer's Guide 48

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

Applicability Fast streaming mode only.
PicoScope 3224, 3424 and 3425 variants only.
Not compatible with ETS triggering - has no effect in ETS mode.

Arguments handle, the handle of the required device.

start_time, the time in nanoseconds of the first data sample

required.

pbuffer_a, pbuffer_b, pbuffer_c, pbuffer_d, pointers

to buffers into which the function will write the raw sample values
from channels A, B, C and D.

overflow, where the function will write a bit field indicating

whether the voltage on each of the input channels has overflowed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D C B A D C B A

common-mode
overflow

differential
overflow*

*3425 variant only

triggerAt, where the function will write an index into the

buffers. The index is the number of the the sample at the trigger
reference point. Valid only when trigger is TRUE.

trigger, where the function will write a Boolean indicating that

a trigger has occurred and triggerAt is valid.

no_of_values, the number of values required.

Returns the number of values written to each buffer, if successful
0 if a parameter was out of range

12

9

Technical information49

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.28 ps3000_save_streaming_data

short ps3000_save_streaming_data (
short handle,
PS3000_CALLBACK_FUNC lpCallbackFunc,
short * dataBuffers,
short dataBufferSize)

This function sends all available streaming data to the my_save_streaming_data()
callback function in your application. Your callback function decides what to do with
the data.

Applicability Fast streaming mode only.
PicoScope 3224, 3424 and 3425 variants only.
Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments handle, the handle of the required device.

lpCallbackFunc, a pointer to the my_save_streaming_data()

 callback function in your application that handles the saving of
streaming data.

dataBuffers, a pointer to the data.

dataBufferSize, the size of the buffer, in samples.

Returns undefined

51

12

9

51

PicoScope 3000 Series Programmer's Guide 50

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.29 ps3000_overview_buffer_status

short ps3000_overview_buffer_status (
short handle,
short * previous_buffer_overrun)

This function indicates whether or not the overview buffers used by
ps3000_run_streaming_ns() have overrun. If an overrun occurs, you can choose
to increase the overview_buffer_size argument that you pass in the next call to
ps3000_run_streaming_ns() .

Applicability Fast streaming mode only.
PicoScope 3224, 3424 and 3425 variants only.
Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments handle, the handle of the required device.

previous_buffer_overrun, a pointer to a Boolean indicating

whether the overview buffers have overrun. Any non-zero value
indicates a buffer overrun.

Returns 0 if the function was successful

1 if the function failed due to an invalid handle

41

41

12

9

Technical information51

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.4.30 Callback function to save data

short my_save_streaming_data (
short * dataBuffer,
short noOfBuffers)

This is a callback function in your application that receives data from
ps3000_save_streaming_data() .

The function name my_save_streaming_data() is just for illustration. When you write
this function, you can give it any name you wish. The PicoScope driver does not need
to know your function's name; it refers to it only by the address that you pass to
ps3000_save_streaming_data() .

Applicability Fast streaming mode only.
PicoScope 3224, 3424 and 3425 variants only.
Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments dataBuffer, a pointer to the buffer where the values are stored.

noOfBuffers, tells your function how many buffers there are.

Returns undefined

49

42

12

9

PicoScope 3000 Series Programmer's Guide 52

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.4.31 ps3000_close_unit

short ps3000_close_unit (
short handle)

Shuts down a PicoScope 3000 Series PC Oscilloscope.

Applicability All modes.

Arguments handle, the handle, returned by ps3000_open_unit() , of the

oscilloscope being closed.

Returns 1 if a valid handle is passed

0 if handle is not valid

14

Technical information53

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.5 Programming examples

Programming examples are optionally available when you install PicoScope 5. Select
the Custom installation option and then enable Programming Examples, selecting
either the whole tree or just the examples you are interested in. There are examples
for the following languages and development environments:

2.5.1 C

There are two C example programs: one is a simple GUI application, and the other is a
more comprehensive console mode program that demonstrates all of the facilities of
the driver.

The GUI example program is a generic Windows application - that is, it does not use
Borland AppExpert or Microsoft AppWizard. To compile the program, create a new
project for an Application containing the following files from the Examples\ps3000\
subdirectory of your PicoScope installation:

ps3000.c
ps3000.rc

and

ps3000bc.lib (Borland 32-bit applications)

or
ps3000.lib (Microsoft Visual C 32-bit applications)

The following files must be in the compilation directory:

ps3000.rch
ps3000.h

and the following file must be in the same directory as the executable.

ps3000.dll

The console example program is a generic windows application - that is, it does not
use Borland AppExpert or Microsoft AppWizard. To compile the program, create a new
project for an Application containing the following files:

ps3000con.c

and

ps3000bc.lib (Borland 32-bit applications)

or
ps3000.lib (Microsoft Visual C 32-bit applications).

The following file must be in the compilation directory:

ps3000.h

and the following file must be in the same directory as the executable:

ps3000.dll

PicoScope 3000 Series Programmer's Guide 54

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

2.5.2 C++

The C++ example program shows how to use the fast streaming mode in the
driver, with and without triggering , and demonstrates the auto_stop feature. It
runs in console mode and requires a PicoScope 3224 or 3424 scope unit..

You will need to compile the following files that are supplied in the Examples\ps3000
\ subdirectory of your PicoScope installation:

ps3000.h
small.ico
streamingTests.cpp
streamingTests.ico
streamingTests.rc
streamingTestsResource.h (rename to resource.h before compiling)

You will also need the following library for Microsoft C++:

ps3000.lib (Microsoft Visual C 32-bit applications)

Ensure that the program directory contains a copy of:

ps3000.dll

from the PicoScope installation directory.

A Visual Studio 2005 (VC8) project file, faststreaming.vcproj, is provided.

2.5.3 Visual Basic

The Examples\ps3000\ subdirectory of your PicoScope installation contains the

following files:

ps3000.vbp - project file

ps3000.bas - procedure prototypes

ps3000.frm - form and program

Note: The functions which return a TRUE/FALSE value, return 0 for FALSE and 1 for
TRUE, whereas Visual Basic expects 65,535 for TRUE. Check for >0 rather than
=TRUE.

12

6

Technical information55

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.5.4 Delphi

The program:

ps3000.dpr

in the Examples\ps3000\ subdirectory of your PicoScope installation demonstrates

how to operate PicoScope 3000 Series PC Oscilloscopes. The file:

ps3000.inc

contains procedure prototypes that you can include in your own programs. Other
required files are:

ps3000fm.res
ps3000fm.dfm
ps3000fm.pas

This has been tested with Delphi version 3.

2.5.5 Excel

1. Load the spreadsheet ps3000.xls
2. Select Tools | Macro
3. Select GetData
4. Select Run

Note: The Excel macro language is similar to Visual Basic. The functions which return
a TRUE/FALSE value, return 0 for FALSE and 1 for TRUE, whereas Visual Basic expects
65,535 for TRUE. Check for >0 rather than =TRUE.

2.5.6 Agilent VEE

The example function ps3000.vee is in the Examples\ps3000\ subdirectory of your

PicoScope installation. It uses procedures that are defined in ps3000.vh. It was

tested using Agilent VEE version 5.

2.5.7 LabView

The VI example in the Examples\ps3000\ subdirectory of your PicoScope installation

shows how to access the driver functions using LabVIEW. It was tested using version
6.1 of LabVIEW for Windows. To use the example, copy these files to your LabVIEW
directory:

ps3000_fastStream.vi
ps3000_runBlock.vi
ps3000_runStream.vi
ps3000wrap.c
ps3000wrap.dll

You will also need this file from the installation directory:

PicoScope 3000 Series Programmer's Guide 56

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

ps3000.dll

Technical information57

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

2.6 Driver error codes

Code Name Description

0 PS3000_OK The oscilloscope is functioning correctly.

1 PS3000_MAX_UNITS_OPENED Attempts have been made to open more
than PS3000_MAX_UNITS.

2 PS3000_MEM_FAIL Not enough memory could be allocated on
the host machine.

3 PS3000_NOT_FOUND An oscilloscope could not be found.

4 PS3000_FW_FAIL Unable to download firmware.

5 PS3000_NOT_RESPONDING The oscilloscope is not responding to
commands from the PC.

6 PS3000_CONFIG_FAIL The configuration information in the
oscilloscope has become corrupt or is
missing.

7 PS3000_OS_NOT_SUPPORTED The operating system is not Windows XP
SP2 or Vista.

PicoScope 3000 Series Programmer's Guide 58

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

3 Glossary

AC/DC control. Each channel can be set to either AC coupling or DC coupling. With
DC coupling, the voltage displayed on the screen is equal to the true voltage of the
signal across the differential inputs. With AC coupling, any DC component of the
signal is filtered out, leaving only the variations in the signal (the AC component).

Aggregation. In fast streaming mode , the PicoScope 3000 driver can use a
method called aggregation to reduce the amount of data your application needs to
process. This means that for every block of consecutive samples, it stores only the
minimum and maximum values. You can set the number of samples in each block,
called the aggregation parameter, when you call ps3000_run_streaming_ns() for
real-time capture, and when you call ps3000_get_streaming_values() to obtain
post-processed data.

Aliasing. An effect that can cause digital oscilloscopes to display fast-moving
waveforms incorrectly, by showing spurious low-frequency signals ("aliases") that do
not exist in the input. To avoid this problem, choose a sampling rate that is at least
twice the frequency of the fastest-changing input signal.

Analogue bandwidth. All oscilloscopes have an upper limit to the range of
frequencies at which they can measure accurately. The analog bandwidth of an
oscilloscope is defined as the frequency at which a displayed sine wave has half the
power of the input sine wave (or, equivalently, about 71% of the amplitude).

Block mode. A sampling mode in which the computer prompts the oscilloscope to
collect a block of data into its internal memory before stopping the oscilloscope and
transferring the whole block into computer memory. This mode of operation is
effective when the input signal being sampled is high frequency. Note: To avoid
aliasing effects, the maximum input frequency must be less than half the sampling
rate.

Buffer size. The size, in samples, of the oscilloscope buffer memory. The buffer
memory is used by the oscilloscope to temporarily store data before transferring it to
the PC.

Common-mode voltage. The common-mode voltage of two points is the average
voltage of the two points with respect to ground. A differential oscilloscope accurately
measures the voltage difference between its two inputs and ignores their common-
mode voltage, as long as the common-mode voltage remains within a defined range.
Outside this range the accuracy of the measurement cannot be guaranteed.

Differential oscilloscope. A differential oscilloscope measures the voltage difference
between two points, regardless of the voltage of either point with respect to ground.
This is unlike a conventional oscilloscope, which requires one of the two points to be
at ground potential.

Differential voltage limit. The differential voltage (the voltage difference between
the positive and negative inputs on one channel) must not exceed this limit, or the
oscilloscope may be permanently damaged.

ETS. Equivalent Time Sampling. ETS constructs a picture of a repetitive signal by
accumulating information over many similar wave cycles. This means the oscilloscope
can capture fast-repeating signals that have a higher frequency than the maximum
sampling rate. Note: ETS should not be used for one-shot or non-repetitive signals.

12

41

45

58

Glossary59

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

External trigger. This is the BNC socket marked E on the PicoScope 3204, 3205 and
3206 PC Oscilloscopes. It can be used to start a data collection run but cannot be
used to record data. As it shares the same connector as the signal generator output,
these two functions cannot be used at the same time. It is possible, however, to use
the output from the signal generator as a trigger.

Maximum sampling rate. A figure indicating the maximum number of samples the
oscilloscope is capable of acquiring per second. Maximum sample rates are given in
MS/s (megasamples per second). The higher the sampling capability of the
oscilloscope, the more accurate the representation of the high frequencies in a fast
signal.

Oversampling. Oversampling is taking more than one measurement during a time
interval and returning an average. If the signal contains a small amount of noise, this
technique can increase the effective vertical resolution of the oscilloscope.

Overvoltage. Any input voltage to the oscilloscope must not exceed the overvoltage
limit, measured with respect to ground, otherwise the oscilloscope may be
permanently damaged.

PC Oscilloscope. A measuring instrument consisting of a Pico Technology scope
device and the PicoScope software. It provides all the functions of a bench-top
oscilloscope without the cost of a display, hard disk, network adapter and other
components that your PC already has.

PicoScope software. This is a software product that accompanies all our
oscilloscopes. It turns your PC into an oscilloscope, spectrum analyser, and meter
display.

Signal generator. This is a feature of some oscilloscopes which allows a signal to be
generated without an external input device being present. The signal generator
output is the BNC socket marked E on the oscilloscope. If you connect a BNC cable
between this and one of the channel inputs, you can send a signal into one of the
channels. On some units, the signal generator can generate a simple TTL square
wave, while on others it can generate a sine, square or triangle wave that can be
swept back and forth.

Note: The signal generator output is on the same connector as the external trigger
input, so these two functions cannot be used at the same time. It is possible,
however, to use the output from the signal generator as a trigger.

Spectrum analyser. An instrument that measures the energy content of a signal in
each of a large number of frequency bands. It displays the result as a graph of energy
(on the vertical axis) against frequency (on the horizontal axis). The PicoScope
software includes a spectrum analyser.

Streaming mode. A sampling mode in which the oscilloscope samples data and
returns it to the computer in an unbroken stream. This mode of operation is effective
when the input signal being sampled contains only low frequencies.

Timebase. The timebase controls the time interval across the scope display. There
are ten divisions across the screen and the timebase is specified in units of time per
division, so the total time interval is ten times the timebase.

USB 1.1. USB (Universal Serial Bus) is a standard port that enables you to connect
external devices to PCs. A typical USB 1.1 port supports a data transfer rate of 12
Mbps (12 megabits per second), and is much faster than a serial port.

PicoScope 3000 Series Programmer's Guide 60

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

USB 2.0. USB (Universal Serial Bus) is a standard port that enables you to connect
external devices to PCs. A typical USB 2.0 port supports a data transfer rate that is 40
times faster than that supported by USB 1.1. USB 2.0 is backwards-compatible with
USB 1.1.

Vertical resolution. A value, in bits, indicating the degree of precision with which
the oscilloscope can turn input voltages into digital values. Calculation techniques can
improve the effective resolution.

Voltage range. The voltage range is the difference between the maximum and
minimum voltages that can be accurately captured by the oscilloscope.

Index61

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.ps3000pg.en

Index

A
AC/DC control 58

AC/DC coupling 4, 18

Access 2

Address 3

Advanged triggering 26, 28, 30, 31, 33

Aggregation 12, 41, 45

Agilent VEE 55

Aliasing 5, 58

Analogue bandwidth 58

API 13

B
Block mode 5, 6, 7, 8, 9, 34, 58

Buffer size 58

C
C programming 53

C++ programming 54

Callback 43

Channel 4, 5, 18, 24, 25

Closing a unit 52

Common-mode voltage 58

Compatible streaming mode 11

Contact details 3

Copyright 2

D
Data acquisition 12

Delphi programming 55

Driver 4

error codes 57

E
Email 3

Error codes 57

ETS 9, 23

Excel macros 55

External trigger 5, 6, 24, 25

F
Fast streaming mode 12

Fax 3

Fitness for purpose 2

Functions 13

ps3000_close_unit 52

ps3000_flash_led 20

ps3000_get_streaming_last_values 42

ps3000_get_streaming_values 45

ps3000_get_streaming_values_no_aggregation
 47

ps3000_get_timebase 19

ps3000_get_times_and_values 39

ps3000_get_unit_info 17

ps3000_get_values 38

ps3000_open_unit 14

ps3000_open_unit_async 15

ps3000_open_unit_progress 16

ps3000_overview_buffer_status 50

ps3000_ready 36

ps3000_run_block 34

ps3000_run_streaming 35

ps3000_run_streaming_ns 41

ps3000_save_streaming_data 49

ps3000_set_channel 18

ps3000_set_ets 23

ps3000_set_siggen 21

ps3000_set_trigger 24

ps3000_set_trigger2 25

ps3000_stop 37

ps3000SetAdvTriggerChannelConditions 28

ps3000SetAdvTriggerChannelDirections 30

ps3000SetAdvTriggerChannelProperties 26

ps3000SetAdvTriggerDelay 33

ps3000SetPulseWidthQualifier 31

save streaming data callback 51

streaming data buffer callback 43

G
Gain 5

H
High-precision scopes 12

High-speed sampling 7

I
Intended use 1

L
LED 20

Legal information 2

Liability 2

PicoScope 3000 Series Programmer's Guide 62

Copyright © 2007-2010 Pico Technology Limited. All rights reserved. ps3000pg.en

M
Macros in Excel 55

Memory in scope 8

Meter 1

Mission-critical applications 2

Multi-unit operation 6

N
Normal mode 10, 11

O
One-shot signal 9

Opening a unit 14, 15, 16

Oversampling 5

Overview buffer 50

P
PC Oscilloscope 1, 58

PC requirements 1

PicoLog software 4, 57

picopp.inf 4

picopp.sys 4

PicoScope 3000 Series 1, 6, 57

PicoScope software 1, 4, 57, 58

Pre-trigger 6

Programming

C 53

C++ 54

Dephi 55

Visual Basic 54

PWQ_CONDITIONS structure 32

R
Resolution, vertical 5, 58

S
Sampling rate 9, 58

Signal generator 5, 6, 8, 21

Spectrum analyser 1, 58

Stopping sampling 37

Streaming mode 7, 58

compatible 11

fast 12

normal 10, 11

windowed 10, 11

Support 2

Sweep 5

T
Technical assistance 3

Telephone 3

Threshold voltage 6

Time interval 5, 9

Timebase 19, 34, 58

Trademarks 2

TRIGGER_CHANNEL_PROPERTIES structure 27

TRIGGER_CONDITIONS structure 29

Triggering 6, 9, 24, 25

U
Upgrades 2

Usage 2

USB 1, 58

hub 6

V
Vertical resolution 5

Viruses 2

Visual Basic programming 54

Voltage range 58

W
Website 3

Windowed mode 10, 11

63

ps3000pg.en Copyright © 2007-2010 Pico Technology Limited. All rights reserved.

Pico Technology
James House

Colmworth Business Park
ST. NEOTS

Cambridgeshire
PE19 8YP

United Kingdom
Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

www.picotech.com

Copyright © 2007-2010 Pico Technology Limited. All rights reserved.

ps3000pg.en-2

23.09.10

	Introduction
	Overview
	Minimum PC requirements
	Legal information
	Company details

	Technical information
	Driver
	Programming overview
	Device features
	AC/DC coupling
	Voltage ranges
	Oversampling
	Scaling
	Signal generator
	Triggering
	Combining oscilloscopes
	Sampling modes
	Block mode
	Using block mode
	ETS (Equivalent Time Sampling)
	Using ETS mode
	Streaming modes
	Compatible streaming mode
	Using compatible streaming mode
	Fast streaming mode
	Using fast streaming mode

	Functions
	ps3000_open_unit
	ps3000_open_unit_async
	ps3000_open_unit_progress
	ps3000_get_unit_info
	ps3000_set_channel
	ps3000_get_timebase
	ps3000_flash_led
	ps3000_set_siggen
	ps3000_set_ets
	ps3000_set_trigger
	ps3000_set_trigger2
	ps3000SetAdvTriggerChannelProperties
	TRIGGER_CHANNEL_PROPERTIES structure

	ps3000SetAdvTriggerChannelConditions
	TRIGGER_CONDITIONS structure

	ps3000SetAdvTriggerChannelDirections
	ps3000SetPulseWidthQualifier
	PWQ_CONDITIONS structure

	ps3000SetAdvTriggerDelay
	ps3000_run_block
	ps3000_run_streaming
	ps3000_ready
	ps3000_stop
	ps3000_get_values
	ps3000_get_times_and_values
	ps3000_run_streaming_ns
	ps3000_get_streaming_last_values
	Callback function to copy data to buffer
	ps3000_get_streaming_values
	ps3000_get_streaming_values_no_aggregation
	ps3000_save_streaming_data
	ps3000_overview_buffer_status
	Callback function to save data
	ps3000_close_unit

	Programming examples
	C
	C++
	Visual Basic
	Delphi
	Excel
	Agilent VEE
	LabView

	Driver error codes

	Glossary

