PiCcO

e el
" - By

Technology

PicoScope 6000 Series
PC Oscilloscopes

Programmer's Guide

ps6000pg.en-7
Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

1CO

Technology

PicoScope 6000 Series Programmer's Guide |

Contents
T INErOAUCLION wevvverrrererereeereeerereeeeeaeeeeesesessnsssnnes 1
T WV EICOME ceeiriiitirttieetiietee et etaeeteeeteeetaestsnesensseasssssssssesssnssssssensssnsssnsasesnesssstenssenssennssnneerresennesrnssnnns 1
2 SOftware liCENCE CONAILIONS wvvviirrniiiiiiiiiiiiiitieeettueettteerttaeeeteneeeteesseserssssesanssssenssssersssssssnsssssnssssesnssssssnssssenns 2
BTrademarks oo e s et e e e s et eaeeetetetatetatetetttetetetetetetetetetetttaaetetasasaaanes 2
4 Company [s 13 7 11 K PP RPPRN 3
2 oo Ye 8T o feY ol o = o o [P 4
T SYSEEM FEQUIFEMENTS --coveeuteutitetet ettt ettt sttt b et sttt ettt et e e 4
2 INSLAIAtION INSTFUCLIONS - eeeeeeerererereeerererereeeeeserereseeseesssesssesesssssssssssssssssessns 5
3 Programming with the PicoScope 6000 Seriesccovuiiniiiiiiniiiniiiniiiiiiiiiicrcniccresneennens 6
T DFIVEF eeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteetetteettetetteeteatatteteteteeteteteteeeateteeteeeteteeteeeeeeteeeeeeeeeeeeeaeeesanees 6
2 SYSTEM FEQUIFEIMENTS +eovtieutirrtrnttritentententeettet e st e et es e estt e ste st e st e st e st e s st e bt s b e s b e st e s st assesssesbesabesatasatasssessansans 6

3 Voltage ranges

4 Triggering

5 Sampling modes
1 BIOCK MO oererererereeeeeeiee ettt et ettt bt 8
2 RaPid BIOCK MO #+++11eerereeerersrmemss 10
3 ETS (Equivalent Time Sampling) - wreeeeeseesssssesesisememmiiss i 15
4 SEPEAMING MIOEE -++vvvvvvrrseeereererremesiesss 17
5 RetrieVing StOred data - st 18

6 OVErsampling oo b s s et st st s 19

A 11T Y Y=Y T PP PRPRURRRPRt 19

8 Combining several 0SCIllOSCOPES - . veovrvruiuirtriiiniiieiitnieete sttt s s st 20

L 2 N o I {7 Yt e Y 3N 21
1 PSOO0OBIOCKR @Y r++--++++++11rereeeeereeeesss s 22
p 3 11 1T F L B L@@ iddd] kiiihihh”i”hkhCrit}}}RRERRR A A 23
3 PSO000DAtAREAUY ---vv::+++++eeeeseeersemmmsesssssse e 24
4 pstOOEnumerateUnits ... 25
5 PSOOOOFIAShLE -++-vvvvvvevvressseeeeseersemmmsesssss i 26
L 1 1T e N 1Y T o ii liieiELLEiiiL 27
7 ps6000GetMaxDowWnSamMPIERALIO -+ wwrrrrwrwesessssssesesstsrmmimiiiiss e 28
8 PSO000GELNOOFCAPLUIES -----rvreeessssse1etereereeeeeeess 29
9 ps6000GEtStreamingLatestValU@s - mmwrrmsrsmsrsssrsses s s 30
10 PSO000GELTIMEDASE -+---+-++v+v+vesssssssssssssssssssssss 31
11 ps6000GetTimebase2 - 32
12 ps6000GetTriggerTimeOffset - 33

13 ps6000GetTriggerTimeOffseté4 - -

14 ps6000GetUnitInfo - wwweeeeeeeeenes ...35
15 ps6000GetValues --wmoome .36
16 ps6000GetValuesAsync -38
17 ps6000GetValuesBulk -+ .39
18 PS6000GELVAIUSSBUIKASYNC +++++++vvevssssssssssssssssssssssssssssss 40
19 PS6000GELVAIUSSOVEFIAPPE -rvivvvrerervsessssnsssesesessssseesese oo e 41
20 PS6000GELVAIUESOVErIAPPEABUIK -+-rvvvvreseserersssnsrsssssssssssesebeseseseses oo 42
21 ps6000GetVaIuesTriggerTimeOffsetBuIk ... 43
22 ps6000GetVaIuesTriggerTimeOffsetBuIk64 .. 44
P BTy 11111 L - BB i B il BB ik 45

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

| Contents
24 ps6000IsTriggerOrPulseWidthQualifierEnabled - 46

P L L1111 B L T S s sl i 6L 47

26 PS600ONOOFSLIEAMINGVAIUES ---vrvrrsvorvesssrsssssssssss oo oo 48

27 PSOOO0OPENURL vvvevesesesssssssssssssssssssssssssss 49

28 PSE000OPENUNILASYIC «rovvereveesssssssssssessessmmmisiss 50

29 PS6000OPENURILPIOGIESS -rrivvorsvvesvsrssssssssss s s 51

30 PSOOOORUNBIOCK ---vvvvvvvssseeeeeeerremmmsessss i 52

31 PSOOOORUNSLIAIING w----o-v0-0050000 54

32 PSO000SELCRANNE] -+--++++++eeeeeerrereesesssnsee i 56

33 ps6000SetDataBuffer - .58

34 ps6000SetDataBufferBulk - w39

35 ps6000SetDataBuffers -60

36 ps6000SetDataBuffersBulk - w61

37 pS6000SEtEts - ovoovvvvsveseenns .62

38 ps6000SetEtsTimeBuffer - 63

39 ps6000SetEtsTimeBuffers - 64

40 PSE000SEEEXLEINAICIOCI -+-rvrvvvvesssssssssssssssrsmmmmessss i 65
111U L e Ve T 0 eoouooeeoosoosesoooso 60000000600 000000600 000000000 66

42 ps6000SetPulseWidthQUAlIfier s 67

43 PSO000SELSIGGENAIDILIAry - ooesesesesesssssssssssssssstiett 70

44 Ps6000SEtSiGGENBUIILIN «--rvvvvvvvvvssseeeeeteerrimiiiiii e 73

45 PS6000SEtSIMPIETIIGGEI wrrrrrvvveessssssseesetttrrrmmiiisi 75

46 ps6000SetTriggerChannelConditions - 76

47 ps6000SetTriggerChannelDirections it 78

111 T (T | S i il l E BE il 79

49 PS6000SELTrIGGErDelay «-mrwrrmrrserrssorssrsisrsssss s 81

50 PS6000SEtWaVEfOrMLIMILEr --rvorseverseerssesssssssssssss s oo 82

51 ps6000SigGENSOFtWAr@CONLEOl - mmssssssssssssssssssssssssssssss s 83

B2 PSOOOQSLOP +verereeeeesssssssssssssessemmsssssss 84

53 PS6000SLreamingREady -wwessssssseeeteerrrrmmimiissse i 85

10 Programming @XaMPIES «....ceceererireiniiiinintieintsietntsete ettt sttt sttt b et st be s 86
T OO 86

2 ViSUAL BaSIC c+erererererererereseseseeessietetete ettt ettt stttk h b b s b e b e b et sttt b bbbkttt t ettt 86

3 e RO 86

4 LabVI@W crerererererererereeeteeee etttk ekttt et ettt 87

I D T Y 7 Y) L ol Yo L= N 89
12 Enumerated types and CONSLANTS «...ecveeererteietenieieteteie ettt ettt ettt e b et e et e s sa s beaesn s 92
13 NUMEIIC data YPeS «ovecvrrereirieteinieieiete ettt et st e bt e et e b e et e b e sn s e b e et nsanes 95
T 1 [T T 96
Y 1= 97

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

1

1.1

Introduction

Welcome

The PicoScope 6000 Series of oscilloscopes from Pico
Technology is a range of compact, high-resolution units
designed to replace traditional bench-top oscilloscopes and
digitizers.

This manual explains how to use the Application
Programming Interface (API) for the PicoScope 6000 Series
scopes. For more information on the hardware, see the
PicoScope 6000 Series User's Guide and PicoScope
6000 A/B Series User's Guide available separately.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

2 Introduction

1.2 Software licence conditions

The material contained in this release is licensed, not sold. Pico Technology Limited
grants a licence to the person who installs this software, subject to the conditions
listed below.

Access. The licensee agrees to allow access to this software only to persons who have
been informed of these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico products or with data
collected using Pico products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all
material (software, documents, etc.) contained in this SDK except the example
programs. You may copy and distribute the SDK without restriction, as long as you do
not remove any Pico Technology copyright statements. The example programs in the
SDK may be modified, copied and distributed for the purpose of developing programs
to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or
injury, howsoever caused, related to the use of Pico Technology equipment or
software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot
guarantee that its equipment or software is suitable for a given application. It is your
responsibility, therefore, to ensure that the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that
may be running other software products. For this reason, one of the conditions of the
licence is that it excludes use in mission-critical applications, for example life support
systems.

Viruses. This software was continuously monitored for viruses during production, but
you are responsible for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact
our technical support staff, who will try to fix the problem within a reasonable time. If
you are still dissatisfied, please return the product and software to your supplier
within 28 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at
www.picotech.com. We reserve the right to charge for updates or replacements sent
out on physical media.

1.3 Trademarks

Windows, Excel and Visual Basic are registered trademarks or trademarks of
Microsoft Corporation in the USA and other countries.

LabView is a registered trademark of National Instruments Corporation.

Pico Technology and PicoScope are trademarks of Pico Technology Limited,
registered in the United Kingdom and other countries.

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 3

1.4 Company details

Address: Pico Technology
James House
Colmworth Business Park

ST NEOTS

Cambridgeshire

PE19 8YP

United Kingdom
Phone: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296
Email:
Technical Support: support@picotech.com
Sales: sales@picotech.com
Web site: www.picotech.com

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

mailto:support@picotech.com
mailto:sales@picotech.com
http://www.picotech.com

4 Product information
2 Product information
2.1 System requirements

Using with PicoScope for Windows

To ensure that your PicoScope 6000 Series PC Oscilloscope operates correctly, you
must have a computer with at least the minimum system requirements to run one of
the supported operating systems, as shown in the following table. The performance of
the oscilloscope will be better with a more powerful PC, and will benefit from a multi-
core processor.

Please note the PicoScope software is not installed as part of the SDK.

Item Absolute Recommended | Recommended

minimum minimum full specification
Operating system Windows XP SP2 or later

Windows Vista
Windows 7
32 bit and 64* bit versions supported

Processor) 300 MHz 1 GHz
Memory As required 256 MB 512 MB

by Windows
Free disk space** 1.5GB 2 GB
Ports USB 1.1 compliant port USB 2.0 compliant port
* While the driver will run on a 64 bit operating system, the driver itself is 32-bit

and therefore runs as 32-bit.

**x The PicoScope software does not use all the disk space specified in the table.

The free space is required to make Windows run efficiently.

Using with custom applications

Drivers are available for Windows XP (SP2 or later), Windows Vista and Windows 7.
System specifications for Windows are the same as under "Using with PicoScope for
Windows", above.

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 5

2.2 Installation instructions

IMPORTANT
Install the PicoScope software before connecting your
PicoScope 6000 Series oscilloscope to the PC for the first
time. This will ensure that Windows correctly recognizes the
oscilloscope.

Procedure

® Follow the instructions in the Installation Guide included with your product
package.
@® Connect your oscilloscope to the PC using the USB cable supplied.

Checking the installation

Once you have installed the software and connected the oscilloscope to the PC, start
the PicoScope software. PicoScope should now display any signal connected to the
scope inputs. If a probe is connected to your oscilloscope, you should see a small

50 or 60 hertz signal in the oscilloscope window when you touch the probe tip with
your finger.

Moving your PicoScope oscilloscope to another USB port

® Windows XP

When you first installed the oscilloscope by plugging it into a USB port, Windows
associated the Pico driver with that port. If you later move the oscilloscope to a
different USB port, Windows will display the "New Hardware Found Wizard" again.
When this occurs, just click "Next" in the wizard to repeat the installation. If Windows
gives a warning about Windows Logo Testing, click "Continue Anyway". As all the
software you need is already installed on your computer, there is no need to insert the
Pico Software CD again.

® Windows Vista/7

The process is automatic. When you move the device from one port to another,
Windows displays an "Installing device driver software” message and then a
"PicoScope 6000 series oscilloscope” message. The oscilloscope is then ready for use.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

Programming with the PicoScope 6000 Series

Programming with the PicoScope 6000 Series

The ps6000. dl | dynamic link library in your PicoScope installation directory allows
you to program a PicoScope 6000 Series oscilloscope using standard C function calls.

A typical program for capturing data consists of the following steps:

Open the scope unit.

Set up the input channels with the required voltage ranges and coupling type.
Set up triggering.

Start capturing data. (See Sampling modes, where programming is discussed in
more detail.)

Wait until the scope unit is ready.

Stop capturing data.

Copy data to a buffer.

Close the scope unit.

[N NN

[N NN

Numerous sample programs are installed with your PicoScope software. These show
how to use the functions of the driver software in each of the modes available.

3.1 Driver
Your application will communicate with a PicoScope 6000 API driver called
ps6000. dl | . The driver exports the PicoScope 6000 function definitions in standard
C format, but this does not limit you to programming in C. You can use the APl with
any programming language that supports standard C calls.
The API driver depends on a kernel driver, pi copp. sys, which works with Windows
XP, Windows Vista and Windows 7. There is a further low-level driver called
W nUsb. sys. These low-level drivers are installed by the PicoScope 6 software when
you plug the PicoScope 6000 Series oscilloscope into the computer for the first time.
Your application does not call these drivers directly.
3.2 System requirements
General requirements
See System Requirements.
usB
The PicoScope 6000 driver offers three different methods of recording data, all of
which support both USB 1.1 and USB 2.0, although the fastest transfer rates are
achieved using USB 2.0.
3.3 Voltage ranges
You can set a device input channel to any voltage range from 50 mV to 20 V with
the ps6000Set Channel function. Each sample is scaled to 16 bits so that the values
returned to your application are as follows:
Constant Voltage Value returned
decimal hex
PS6000_M N _VALUE minimum | -32 512 8100
zero 0 0000
PS6000_MAX VALUE maximum 32 512 7F00
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 7

3.4

3.5

Triggering

PicoScope 6000 Series oscilloscopes can either start collecting data immediately, or be
programmed to wait for a trigger event to occur. In both cases you need to use the
PicoScope 6000 trigger functions ps6000Set Tr i gger Channel Condi ti ons,
ps6000Set Tri gger Channel Di recti ons and

ps6000Set Tri gger Channel Properti es. A trigger event can occur when one of the
signal or trigger input channels crosses a threshold voltage on either a rising or a
falling edge.

Sampling modes

PicoScope 6000 Series oscilloscopes can run in various sampling modes.

® Block mode. In this mode, the scope stores data in internal RAM and then
transfers it to the PC. When the data has been collected it is possible to examine
the data, with an optional downsampling factor. The data is lost when a new run is
started in the same segment, the settings are changed, or the scope is powered
down.

@® ETS mode. In this mode, it is possible to increase the effective sampling rate of
the scope when capturing repetitive signals. It is a modified form of block mode.

® Rapid block mode. This is a variant of block mode that allows you to capture
more than one waveform at a time with a minimum of delay between captures. You
can use downsampling in this mode if you wish.

@ Streaming mode. In this mode, data is passed directly to the PC without being
stored in the scope's internal RAM. This enables long periods of slow data collection
for chart recorder and data-logging applications. Streaming mode provides fast
streaming at up to 13.33 MS/s (75 ns per sample). Downsampling and triggering
are supported in this mode.

In all sampling modes, the driver returns data asynchronously using a callback. This is
a call to one of the functions in your own application. When you request data from the
scope, you pass to the driver a pointer to your callback function. When the driver has
written the data to your buffer, it makes a callback (calls your function) to signal that
the data is ready. The callback function then signals to the application that the data is
available.

Because the callback is called asynchronously from the rest of your application, in a
separate thread, you must ensure that it does not corrupt any global variables while it

runs.

In block mode, you can also poll the driver instead of using a callback.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

Programming with the PicoScope 6000 Series

3.5.1

Block mode

In block mode, the computer prompts a PicoScope 6000 series oscilloscope to collect
a block of data into its internal memory. When the oscilloscope has collected the
whole block, it signals that it is ready and then transfers the whole block to the
computer's memory through the USB port.

2

Block size. The maximum number of values depends upon the size of the
oscilloscope's memory. The memory buffer is shared between the enabled
channels, so if two channels are enabled, each receives half the memory. These
features are handled transparently by the driver. The block size also depends on
the number of memory segments in use (see ps6000MemorySegments).

Sampling rate. A PicoScope 6000 Series oscilloscope can sample at a number of
different rates according to the selected timebase and the combination of channels
that are enabled. See the PicoScope 6000 Series User's Guide for the specifications
that apply to your scope model.

Setup time. The driver normally performs a number of setup operations, which
can take up to 50 milliseconds, before collecting each block of data. If you need to
collect data with the minimum time interval between blocks, use rapid block mode
and avoid calling setup functions between calls to ps6000RunBlock, ps6000Stop

and ps6000GetValues.

Downsampling. When the data has been collected, you can set an optional
downsampling factor and examine the data. Downsampling is a process that

reduces the amount of data by combining adjacent samples. It is useful for
zooming in and out of the data without having to repeatedly transfer the entire
contents of the scope's buffer to the PC.

Memory segmentation. The scope's internal memory can be divided into
segments so that you can capture several waveforms in succession. Configure this
using ps6000MemorySegments.

Data retention. The data is lost when a new run is started in the same segment,
the settings are changed, or the scope is powered down.

See Using block mode for programming details.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 9

3.5.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a
single memory segment:

1. Open the oscilloscope using ps60000penUnit.

2. Select channel ranges and AC/DC coupling using ps6000SetChannel.

3. Using ps6000GetTimebase, select timebases until the required nanoseconds per
sample is located.

4. Use the trigger setup functions ps6000SetTriggerChannelConditions,

ps6000SetTriggerChannelDirections and ps6000SetTriggerChannelProperties to
set up the trigger if required.

5. Start the oscilloscope running using ps6000RunBlock.

6. Wait until the oscilloscope is ready using the ps6000BlockReady callback (or poll
using ps6000I sReady).

7. Use ps6000SetDataBuffer to tell the driver where your memory buffer is.

8. Transfer the block of data from the oscilloscope using ps6000GetValues.

9. Display the data.

10. Repeat steps 5 to 9.

11. Stop the oscilloscope using ps6000Stop.

7
t pPs60000penUnit ,‘, »
=

656000 set trigger functions

Set up device

Start collection
»

........
.....
......... Data ready
............
................
_______________ Data received
............

....

GsﬁOUORunBlock

@pp: ps6000BlockReady)A

G)sﬁOOOSetDataBuffer)—p
GsﬁOUOGetValues)—b

Data processed

Driver '

12. Request new views of stored data using different downsampling parameters:
see Retrieving stored data.

3.5.1.2 Asynchronous calls in block mode

The ps6000GetValues function may take a long time to complete if a large amount of
data is being collected. For example, it can take 6 seconds to retrieve the full 1 billion
samples from a PicoScope 6403 or 6404B. To avoid hanging the calling thread, it is
possible to call ps6000GetValuesAsync instead. This immediately returns control to
the calling thread, which then has the option of waiting for the data or calling
ps6000Stop to abort the operation.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

10

Programming with the PicoScope 6000 Series

3.5.2

3.5.21

Rapid block mode

In normal block mode, the PicoScope 6000 Series scopes collect one waveform at a
time. You start the the device running, wait until all samples are collected by the
device, and then download the data to the PC or start another run. There is a time
overhead of tens of milliseconds associated with starting a run, causing a gap between
waveforms. When you collect data from the device, there is another minimum time
overhead which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the
minimum time between waveforms. It reduces the gap from milliseconds to less than
1 microsecond.

See Using rapid block mode for details.

Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you
need to set up two buffers for each channel to receive the minimum and maximum
values.

Without aggregation

1. Open the oscilloscope using ps60000penUnit.

2. Select channel ranges and AC/DC coupling using ps6000SetChannel.

3. Using ps6000GetTimebase, select timebases until the required nanoseconds per
sample is located.

4. Use the trigger setup functions ps6000SetTriggerChannelConditions,
ps6000SetTriggerChannelDirections and ps6000SetTriggerChannelProperties to
set up the trigger if required.

5. Set the number of memory segments equal to or greater than the number of
captures required using ps6000MemorySegments. Use ps6000SetNoOfCaptures
before each run to specify the number of waveforms to capture.

6 Start the oscilloscope running using ps6000RunBlock.

7. Wait until the oscilloscope is ready using the ps6000BlockReady callback.

8. Use ps6000SetDataBufferBulk to tell the driver where your memory buffers are.

9

1

. Transfer the blocks of data from the oscilloscope using ps6000GetValuesBulk.
0. Retrieve the time offset for each data segment using
ps6000GetValuesTriggerTimeOffsetBulk64.
11. Display the data.
12. Repeat steps 6 to 11 if necessary.
13. Stop the oscilloscope using ps6000Stop.

With aggregation

To use rapid block mode with aggregation, follow steps 1 to 7 above and then proceed
as follows:

8a. Call ps6000SetDataBuffersBulk to set up one pair of buffers for every waveform
segment required.

9a. Call ps6000GetValuesBulk for each pair of buffers.

10a. Retrieve the time offset for each data segment using
ps6000GetValuesTriggerTimeOffsetBulk64.

Continue from step 11 above.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 1

3.5.2.2 Rapid block mode example 1: no aggregation

#defi ne MAX_SAMPLES 1000

Set up the device up as usual.

® Open the device

@® Channels

® Trigger

® Number of memory segments (this should be equal or more than the no of captures
required)

/] set the number of waveforns to 100
ps6000Set NoOf Capt ures (handl e, 100);

pParaneter = fal se;
ps6000RunBl ock

(
handl e,
0, [l noOF PreTrigger Sanpl es
10000, /'l noOf Post Tri gger Sanpl es
1, /] timebase to be used
1, /1 oversanpl e
&t i mel ndi sposedMs,
1, /'l segnent index
| pReady,
&pPar anet er

)

Comment: these variables have been set as an example and can be any valid value.
pParameter will be set true by your callback function IpReady.

while (!pParaneter) Sleep (0);
for (int i =0; i < 10; i++)
for (int ¢ = PS6000_CHANNEL_A; c¢ <= PS6000_CHANNEL_D; c++)

ps6000Set Dat aBuf f er Bul k

(
handl e,
C1
&uffer[c][i],
MAX SAMPLES,
i

),

}
}

Comments: buffer has been created as a two-dimensional array of pointers to shorts,
which will contain 1000 samples as defined by MAX_ SAMPLES. There are only 10
buffers set, but it is possible to set up to the number of captures you have requested.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

12

Programming with the PicoScope 6000 Series

ps6000Cet Val uesBul k

(
handl e,
&noCf Sanpl es, /1l set to MAX SAMPLES on entering the
function
10, /'l fronSegnment | ndex
19, /1 toSegnent | ndex
1, /1 downsanpling ratio
PS6000_RATI O MODE_NONE, // downsanpling rati o node
overfl ow /1l an array of size 10 shorts
)

Comments: the number of samples could be up to noCf PreTri gger Sanpl es +
noOf Post Tri gger Sanpl es, the values set in ps6000RunBl ock. The samples are
always returned from the first sample taken, unlike the ps6000Cet Val ues function
which allows the sample index to be set. This function does not support aggregation.
The above segments start at 10 and finish at 19 inclusive. It is possible for the

f ronSegnent | ndex to wrap around to the t 0Segenent | ndex, by setting the

f ronSegnent | ndex to 98 and the t 0Segnent | ndex to 7.

ps6000Get Val uesTri gger Ti meX f set Bul k64
(

handl| e,

tines,

tineUnits,

10,

19

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible
for the f r onSegnent | ndex to wrap around to the t 0Segnent | ndex, if the
f ronSegnent | ndex is set to 98 and the t 0Segnent | ndex to 7.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 13

3.5.2.3 Rapid block mode example 2: using aggregation

#defi ne MAX_SAMPLES 1000

Set up the device up as usual.

® Open the device

@® Channels

® Trigger

@® Number of memory segments (this should be equal or more than the number of
captures required)

/] set the number of waveforns to 100
ps6000Set NoOf Capt ures (handl e, 100);

pParaneter = fal se;
ps6000RunBl ock

(
handl e,
0, /I noCx PreTri gger Sanpl es,
1000000, /1 noOX Post Tri gger Sanpl es,
1, /] timebase to be used,
1, /1 oversanpl e
&t i mel ndi sposedMs,
1, /1 oversanpl e
| pReady,
&pPar anet er

)

Comments: the set-up for running the device is exactly the same whether or not
aggregation will be used when you retrieve the samples.

for (int ¢ = PS6000_CHANNEL_A; c <= PS6000_CHANNEL_D; c++)

ps6000Set Dat aBuf fers
(
handl| e,
Cl
&buf f er Max[c],
&ufferM n[c]
MAX_SAMPLES,
PS6000_RATI O MODE_AGGREGATE
),
}

Comments: since only one waveform will be retrieved at a time, you only need to set
up one pair of buffers; one for the maximum samples and one for the minimum
samples. Again, the buffer sizes are 1000 samples.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

14

Programming with the PicoScope 6000 Series

for (int segment = 10; segnent < 20; segnent ++)
{
ps6000Get Val ues
(
handl| e,
Ol
&nof Sanpl es, // set to MAX_SAMPLES on entering
1000,
&downSanpl eRati oMbde, //set to RATI O MODE AGGREGATE
i ndex,
overfl ow

);
ps6000Get Tri gger Ti mef f set 64

handl e,
& i nme,
&inmeUnits,
i ndex
)
}

Comments: each waveform is retrieved one at a time from the driver with an
aggregation of 1000.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 15

3.5.3 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing
repetitive signals. It is a modified form of block mode, and is controlled by the

ps6000SetTrigger and ps6000SetEts functions.

2

Overview. ETS works by capturing several cycles of a repetitive waveform, then
combining them to produce a composite waveform that has a higher effective
sampling rate than the individual captures. The scope hardware adds a short,
variable delay, which is a small fraction of a single sampling interval, between each
trigger event and the subsequent sample. This shifts each capture slightly in time
so that the samples occur at slightly different times relative to those of the previous
capture. The result is a larger set of samples spaced by a small fraction of the
original sampling interval. The maximum effective sampling rates that can be
achieved with this method are listed in the User's Guide for the scope device.

Trigger stability. Because of the high sensitivity of ETS mode to small time
differences, the trigger must be set up to provide a stable waveform that varies as
little as possible from one capture to the next.

Callback. ETS mode returns data to your application using the ps6000BlockReady
callback function.

Applicability Available in block mode only.

Not suitable for one-shot (non-repetitive) signals.

Aggregation and oversampling are not supported.
Edge-triggering only.

Auto trigger delay (aut oTri gger M | | i seconds) is ignored.

3.5.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a
single memory segment:

1.
2.
3.

Open the oscilloscope using ps60000penUnit.

Select channel ranges and AC/DC coupling using ps6000SetChannel.

Using ps6000GetTimebase, select timebases until the required nanoseconds per
sample is located.

Use the trigger setup functions ps6000SetTriggerChannelConditions,
ps6000SetTriggerChannelDirections and ps6000SetTriggerChannelProperties to
set up the trigger if required.

Start the oscilloscope running using ps6000RunBlock.

Wait until the oscilloscope is ready using the ps6000BlockReady callback (or poll
using ps6000IsReady).

Use ps6000SetDataBuffer to tell the driver where your memory buffer is.
Transfer the block of data from the oscilloscope using ps6000GetValues.
Display the data.

While you want to collect updated captures, repeat steps 6-9.

Stop the oscilloscope using ps6000Stop.

Repeat steps 5 to 11.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

16 Programming with the PicoScope 6000 Series

Application ‘
‘ ps60000penUnit } >

ps6000SetChannel / Set up device
(}sGOOOGetTimebase

ps6000SetETS

Get trigger functions

GJsGOOORunBIock

Q\pp: ps6000BlockReady)‘

(ps6oo0setpataBuffer ——>
ps6000GetValues)—»

Data processed

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 17

3.5.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when
using block mode. It can transfer data to the PC at speeds of at least 13.33 million
samples per second (75 nanoseconds per sample), depending on the computer's
performance. This makes it suitable for high-speed data acquisition, allowing you
to capture long data sets limited only by the computer's memory.

® Aggregation. The driver returns aggregated readings while the device is
streaming. If aggregation is set to 1 then only one buffer is returned per channel.
When aggregation is set above 1 then two buffers (maximum and minimum) per
channel are returned.

® Memory segmentation. The memory can be divided into segments to reduce the
latency of data transfers to the PC. However, this increases the risk of losing data
if the PC cannot keep up with the device's sampling rate.

See Using streaming mode for programming details.

3.5.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using
a single memory segment:

Open the oscilloscope using ps60000penUnit.

Select channels, ranges and AC/DC coupling using ps6000SetChannel.

Use the trigger setup functions ps6000SetTriggerChannelConditions,
ps6000SetTriggerChannelDirections and ps6000SetTriggerChannelProperties to
set up the trigger if required.

Call ps6000SetDataBuffer to tell the driver where your data buffer is.

Set up aggregation and start the oscilloscope running using ps6000RunStreaming.
Call ps6000GetStreaminglLatestValues to get data.

Process data returned to your application's function. This example is using Auto
Stop, so after the driver has received all the data points requested by the
application, it stops the device streaming.

8. Call ps6000Stop, even if Auto Stop is enabled.

Wwh e

No oA

Application l

GsﬁOOOOpenUnit

6156000 set trigger functions V

Set up device

Start streaming

< : Get data)
Data processed

s —>
@pp: ps6000StreamingReady)4— \‘-4
[“t0 Stoy,
—

(F_)SGOOOSetDataBuffer

IO

@sﬁOOORunStreaming .

@sﬁ»OOOGetS treaminglLatestValue:

Stop streaming

GJSGOOOStop End streaming
[orver
9. Request new views of stored data using different downsampling parameters:

see Retrieving stored data.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

18 Programming with the PicoScope 6000 Series

3.5.5 Retrieving stored data
You can collect data from the PicoScope 6000 driver with a different downsampling

factor when ps6000RunBlock or ps6000RunStreaming has already been called and has
successfully captured all the data. Use ps6000GetValuesAsync.

Application l

(p56000SetDataBuffer

(psﬁUUDGetValuesAsyn(D—p Data processed

Gpp: psGOOODataRead\D-/

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 19

3.6 Oversampling

Note: This feature is provided for backward-compatibility only. The same effect can be
obtained more efficiently with the PicoScope 6000 Series using the hardware
averaging feature (see Downsampling modes).

When the oscilloscope is operating at sampling rates less than its maximum, it is
possible to oversample. Oversampling is taking more than one measurement during
a time interval and returning the average as one sample. The number of
measurements per sample is called the oversampling factor. If the signal contains a
small amount of wideband noise (strictly speaking, Gaussian noise), this technique
can increase the effective vertical resolution of the oscilloscope by n bits, where n is
given approximately by the equation below:

n = log (oversampling factor) / log 4

Conversely, for an improvement in resolution of n bits, the oversampling factor you
need is given approximately by:

oversampling factor = 47
An oversample of 4, for example, would quadruple the time interval and quarter the
maximum samples, and at the same time would increase the effective resolution by
one bit.

Applicability Available in block mode only.

Cannot be used at the same time as downsampling.

3.7 Timebases

The API allows you to select any of 232 different timebases based on a maximum
sampling rate of 5 GHz. The timebases allow slow enough sampling in block mode to
overlap the streaming sample intervals, so that you can make a smooth transition
between block mode and streaming mode.

timebase sample interval formula sample interval examples
Oto 4 2timebase / 5 000,000,000 0 == 200 ps

1 == 400 ps

2 == 800 ps

3=>1.6ns

4 == 3.2 ns
5 to 2%2-1 (timebase - 4) / 156,250,000 |5 => 6.4 ns

232.1 => ~ 6.87 s

Applicability |Use ps6000GetTimebase API call.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

20

Programming with the PicoScope 6000 Series

3.8

Combining several oscilloscopes

It is possible to collect data using up to 64 PicoScope 6000 Series oscilloscopes at the

same time, depending on the capabilities of the PC. Each oscilloscope must be

connected to a separate USB port. The ps60000penUnit function returns a handle to
an oscilloscope. All the other functions require this handle for oscilloscope
identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps6000BI ockReady(. ..)
/1 define callback function specific to application

handl el
handl e2

ps6000CpenUni t ()
ps6000CpenUni t ()

ps6000Set Channel (handl el)
/] set up unit 1
ps6000RunBl ock(handl el)

ps6000Set Channel (handl e2)
/] set up unit 2
ps6000RunBl ock(handl e2)

/'l data will be stored in buffers
/1 and application will be notified using call back

ready = FALSE

whi | e not ready
ready = handl el _ready
ready &= handl e2_ready

Note: an external clock may be fed into the AUX input to provide some degree of
synchronisation between multiple oscilloscopes.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

21

3.9

API functions

The PicoScope 6000 Series APl exports the following functions for you to use in your
own applications. All functions are C functions using the standard call naming
convention (__stdcal |). They are all exported with both decorated and undecorated

names.

ps6000BlockReady

ps6000CloseUnit

ps6000DataReady
ps6000EnumerateUnits
ps6000FlashlLed
ps6000GetAnalogueOffset
ps6000GetMaxDownSampleRatio
ps6000GetStreaminglatestValues
ps6000GetTimebase
ps6000GetTimebase2
ps6000GetTriggerTimeOffset
ps6000GetTriggerTimeOffset64
ps6000GetUnitinfo

ps6000GetValues
ps6000GetValuesAsync
ps6000GetValuesBulk
ps6000GetValuesBulkAsync
ps6000GetValuesOverlapped
ps6000GetValuesOverlappedBulk
ps6000GetValuesTriggerTimeOffsetBulk
ps6000GetValuesTriggerTimeOffsetBulk64

ps6000IsReady
ps6000IsTriggerOrPulseWidthQualifierEnabled

ps6000MemorySegments
ps6000NoOfStreamingValues
ps60000penUnit
ps60000penUnitAsync
ps60000penUnitProgress
ps6000RunBlock
ps6000RunStreaming
ps6000SetChannel
ps6000SetDataBuffer
ps6000SetDataBufferBulk
ps6000SetDataBuffers
ps6000SetDataBuffersBulk

ps6000SetEts
ps6000SetEtsTimeBuffer

ps6000SetEtsTimeBuffers
ps6000SetExternalClock
ps6000SetNoOfCaptures
ps6000SetPulseWidthQualifier
ps6000SetSigGenArbitrary
ps6000SetSigGenBuiltin
ps6000SetSimpleTrigger
ps6000SetTriggerChannelConditions
ps6000SetTriggerChannelDirections
ps6000SetTriggerChannelProperties
ps6000SetTriggerDelay
ps6000SetWaveformLimiter
ps6000SigGenSoftwareControl
ps6000Stop
ps6000StreamingReady

indicate when block-mode data ready
close a scope device

indicate when post-collection data ready
find all connected oscilloscopes

flash the front-panel LED

get min/max allowable analogue offset
find out aggregation ratio for data

get streaming data while scope is running
find out what timebases are available

find out what timebases are available

find out when trigger occurred (32-bit)
find out when trigger occurred (64-bit)
read information about scope device

get block-mode data with callback

get streaming data with callback

get data in rapid block mode

get data in rapid block mode using callback
set up data collection ahead of capture
set up data collection in rapid block mode
get rapid-block waveform timings (32-bit)
get rapid-block waveform timings (64-bit)
poll driver in block mode

find out whether trigger is enabled

divide scope memory into segments

get number of samples in streaming mode
open a scope device

open a scope device without waiting
check progress of OpenUnit call

start block mode

start streaming mode

set up input channels

register data buffer with driver

set the buffers for each waveform

register aggregated data buffers with driver
register data buffers for rapid block mode
set up equivalent-time sampling

set up buffer for ETS timings (64-bit)

set up buffer for ETS timings (32-bit)

set AUX input to receive external clock
set number of captures to collect in one run
set up pulse width triggering

set up arbitrary waveform generator

set up standard signal generator

set up level triggers only

specify which channels to trigger on

set up signal polarities for triggering

set up trigger thresholds

set up post-trigger delay

limit rapid block transfer rate

trigger the signal generator

stop data capture

indicate when streaming-mode data ready

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

22

Programming with the PicoScope 6000 Series

3.9.1 ps6000BlockReady
typedef void (CALLBACK *ps6000BI ockReady)
short handl e,
Pl CO_STATUS status,
voi d * pPar anet er
)
This callback function is part of your application. You register it with the PicoScope
6000 series driver using ps6000RunBlock, and the driver calls it back when block-
mode data is ready. You can then download the data using the ps6000GetValues
function.
Applicability |Block mode only
Arguments handl e, the handle of the device returning the samples.
st at us, indicates whether an error occurred during collection of
the data.
pPar anet er, a void pointer passed from ps6000RunBlock. Your
callback function can write to this location to send any data, such as
a status flag, back to your application.
Returns nothing
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

23

3.92 ps6000CloseUnit
Pl CO_ STATUS ps6000C oseUni t

short handl e

)

This function shuts down a PicoScope 6000 oscilloscope.

Applicability |All modes

Arguments handl e, the handle, returned by ps60000penUnit, of the scope
device to be closed.
Returns Pl CO_ K
Pl CO HANDLE | NVALI D
Pl CO_USER_CALLBACK
Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

24

Programming with the PicoScope 6000 Series

3.9.3 ps6000DataReady
typedef void (CALLBACK *ps6000Dat aReady)
short handl e,
Pl CO_STATUS st at us,
unsi gned | ong noCOf Sanpl es,
short over f | ow,
voi d * pPar anet er
)
This is a callback function that you write to collect data from the driver. You supply a
pointer to the function when you call ps6000GetValuesAsync, and the driver calls your
function back when the data is ready.
Applicability |All modes
Arguments handl e, the handle of the device returning the samples.
stat us, a Pl CO STATUS code returned by the driver.
noCf Sanpl es, the number of samples collected.
overfl ow, a set of flags that indicates whether an overvoltage has
occurred and on which channels. It is a bit field with bit O
representing Channel A.
pPar anet er, a void pointer passed from ps6000GetValuesAsync.
The callback function can write to this location to send any data,
such as a status flag, back to the application. The data type is
defined by the application programmer.
Returns nothing
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 25

3.9.4 ps6000EnumerateUnits
Pl CO STATUS ps6000EnunerateUnits

short * count,
char * serials,
short * serialLth

)

This function counts the number of PicoScope 6000 units connected to the computer,
and returns a list of serial numbers as a string.

Applicability |All modes

Arguments * count, on exit, the number of PicoScope 6000 units found

* serials, onexit, alist of serial numbers separated by commas
and terminated by a final null. Example: AQ005/ 139, VDR61/ 356,
ZOR14/ 107. Can be NULL on entry if serial numbers are not
required.

* serial Lt h, on entry, the length of the char buffer pointed to by

seri al s; on exit, the length of the string written to seri al s
Returns Pl CO_ K

Pl CO BUSY

Pl CO_NULL_PARAMETER

Pl CO FW FAI L

Pl CO_CONFI G_FAI L

Pl CO_ MEMORY_FAI L

Pl CO_ANALOG BQOARD

Pl CO CONFI G_FAI L_AWG

PI CO_I NI TI ALI SE_FPGA

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

26 Programming with the PicoScope 6000 Series

3.9.5 ps6000FlashLed
Pl CO_STATUS ps6000FI ashLed

short handl e,
short start

)

This function flashes the LED on the front of the scope without blocking the calling
thread. Calls to ps6000RunStreaming and ps6000RunBlock cancel any flashing
started by this function. It is not possible to set the LED to be constantly illuminated,
as this state is used to indicate that the scope has not been initialized.

Applicability |All modes
Arguments handl e, the handle of the scope device

start, the action required: -

< 0 : flash the LED indefinitely.
0 : stop the LED flashing.
>0 :flash the LED start times. Ifthe LED is already flashing
on entry to this function, the flash count will be reset to
start.
Returns PI CO_ X
Pl CO HANDLE | NVALI D
Pl CO_BUSY
Pl CO DRI VER_FUNCTI ON
Pl CO_NOT_RESPONDI NG

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 27

3.9.6 ps6000GetAnalogueOffset
Pl CO STATUS ps6000Get Anal ogueX f set

(
short handl e,
PS6000_RANGE, range
PS6000 COUPLI NG coupling
fl oat * maxi mumvol t age,
fl oat * m ni mumvol t age

)

This function is used to get the maximum and minimum allowable analog offset for a
specific voltage range.

Applicability |Not PicoScope 6407

Arguments handl e, the value returned from opening the device.
range, the voltage range to be used when
gathering the min and max information.
coupl i ng, the type of AC/DC coupling used.

* maxi mumvol t age, a pointer to a float, an out parameter set to
the maximum voltage allowed for the range, may be NULL.
* m ni mumvol t age, a pointer to a float, an out parameter set to
the minimum voltage allowed for the range, may be NULL.

If both maxi nunvol t age and m ni nunmvol t age are set to NULL the
driver will return Pl CO_NULL _PARAMETER
Returns Pl CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO DRI VER_FUNCTI ON
Pl CO_| NVALI D_VOLTAGE_RANGE
Pl CO NULL_PARAMETER

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

28

Programming with the PicoScope 6000 Series

3.9.7 ps6000GetMaxDownSampleRatio
Pl CO_STATUS ps6000CGet MaxDownSanpl eRati o
(
short handl| e,
unsi gned | ong noOf Unaggr egat edSanpl es,
unsi gned | ong * maxDownSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
unsi gned | ong segnent | ndex
)
This function returns the maximum downsampling ratio that can be used for a given
number of samples in a given downsampling mode.
Applicability |All modes
Arguments handl e, the handle of the required device
noOf Unaggr egat edSanpl es, the number of unprocessed samples
to be downsampled
maxDownSanpl eRat i 0: the maximum possible downsampling ratio
downSanpl eRat i oMbde: the downsampling mode. See
ps6000GetValues.
segnent | ndex, the memory segment where the data is stored
Returns Pl CO_OK
Pl CO_I NVALI D_HANDLE
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_NULL_PARAMETER
Pl CO_| NVALI D_PARAVETER
Pl CO_SEGVENT_QUT_OF _RANGE
Pl CO_TOO MANY_SAMPLES
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 29

3.9.8 ps6000GetNoOfCaptures
Pl CO_STATUS ps6000CGet NoOF Capt ur es

short handl e,
unsi gned |l ong * nCaptures

)

This function finds out how many captures are available after ps6000RunBIl ock has
been called when either the collection completed or the collection of waveforms was
interrupted by calling ps6000St op. The returned value (nCapt ur es) can then be
used to iterate through the number of segments using ps6000CGet Val ues, orin a
single call to ps6000Cet Val uesBul k where it is used to calculate the

t oSegnent | ndex parameter.

Applicability |All modes
Arguments handl e: handle of the required device.

nCapt ur es, output: the number of available captures that has been
collected from calling ps6000RunBlI ock.

Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_NO_SAMPLES AVAI LABLE
Pl CO NULL_PARAMETER
Pl CO_| NVALI D_PARAMETER
Pl CO_SEGVENT_OUT_OF RANGE
Pl CO_TOO MANY_ SAMPLES

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

30

Programming with the PicoScope 6000 Series

3.9.9 ps6000GetStreaminglatestValues
Pl CO_STATUS ps6000Get St r eam nglLat est Val ues
short handl e,
ps6000St r eani ngReady | pPs6000Ready,
voi d * pPar anet er
)
This function instructs the driver to return the next block of values to your
ps6000StreamingReady callback function. You must have previously called
ps6000RunStreaming beforehand to set up streaming.
Applicability |Streaming mode only
Arguments handl e, the handle of the required device.
| pPs6000Ready, a pointer to your ps6000StreamingReady callback
function.
pPar amet er, a void pointer that will be passed to the
ps6000StreamingReady callback function. The callback function may
optionally use this pointer to return information to the application.
Returns Pl CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_| NVALI D_CALL
Pl CO_BUSY
Pl CO_NOT_RESPONDI NG
Pl CO DRI VER_FUNCTI ON
Pl CO_STARTI NDEX_| NVALI D
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 31

3.9.10 ps6000GetTimebase

Pl CO_STATUS ps6000Cet Ti nebase
(
short handl e,
unsi gned long tinebase,
unsi gned | ong noSanpl es,
| ong * tinmelnterval Nanoseconds,
short over sanpl e,
unsi gned | ong * maxSanpl es
unsi gned | ong segnent | ndex

)

This function calculates the sampling rate and maximum number of samples for a
given timebase under the specified conditions. The result will depend on the number
of channels enabled by the last call to ps6000SetChannel.

This function is provided for use with programming languages that do not support the
fl oat data type. The value returned in the t i mel nt er val Nanoseconds argument
is restricted to integers. If your programming language supports the f | oat type,
then we recommend that you use ps6000GetTimebase? instead.

To use ps6000GetTimebase or ps6000GetTimebase2, first estimate the timebase
number that you require using the information in the timebase guide. Pass this
timebase to the GetTimebase function and check the returned

ti mel nt erval Nanoseconds argument. If necessary, repeat until you obtain the
time interval that you need.

Applicability |All modes
Arguments handl e, the handle of the required device.

t i nebase, see timebase guide

noSanpl es, the number of samples required. This value is used to
calculate the most suitable time unit to use.

t i mel nt erval Nanoseconds, on exit, the time interval between
readings at the selected timebase. Use NULL if not required.

over sanpl e, the amount of oversample required.
Range: 0 to PS6000 MAX OVERSAMPLE 8BI T.

maxSanpl es, on exit, the maximum number of samples available.
The result may vary depending on the number of channels enabled,
the timebase chosen and the oversample selected. Use NULL if not

required.

segnent | ndex, the index of the memory segment to use.

Returns Pl CO_CK
Pl CO_| NVALI D_HANDLE
Pl CO_TOO MANY SAMPLES
Pl CO_| NVALI D_CHANNEL
Pl CO_| NVALI D_TI MEBASE
Pl CO | NVALI D_PARAMETER
Pl CO_SEGVENT_OUT_OF RANGE
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

32 Programming with the PicoScope 6000 Series

3.9.11 ps6000GetTimebase2
Pl CO_STATUS ps6000Cet Ti nebase?2

(
short handl e,
unsi gned | ong ti mebase,
unsi gned | ong noSanpl es,
fl oat * tinmelnterval Nanoseconds,
short over sanpl e,
unsigned long * maxSanpl es
unsi gned | ong segnent | ndex
)

This function is an upgraded version of ps6000GetTimebase, and returns the time
interval as a f| oat rather than a | ong. This allows it to return sub-nanosecond time
intervals. See ps6000GetTimebase for a full description.

Applicability |All modes

Arguments t i mel nt erval Nanoseconds, a pointer to the time interval

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

All other arguments: see ps6000GetTimebase.
Returns See ps6000GetTimebase.

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

33

3.9.12 ps6000GetTriggerTimeOffset
Pl CO_STATUS ps6000Get Tri gger Ti meOX f set

(
short handl e
unsi gned | ong * timeUpper
unsi gned | ong * tinmeLower
PS6000_TIME_UNITS * tineUnits
unsi gned | ong segnent | ndex
)

This function gets the time, as two 4-byte values, at which the trigger occurred. Call
it after block-mode data has been captured or when data has been retrieved from a

previous block-mode capture. A 64-bit version of this function,
ps6000GetTriggerTimeOffset64, is also available.

Applicability |Block mode, rapid block mode

Arguments handl e, the handle of the required device

ti meUpper, on exit, the upper 32 bits of the time at which the

trigger point occurred

ti meLower, on exit, the lower 32 bits of the time at which the

trigger point occurred

ti meUnits, returns the time units in which ti meUpper and
ti meLower are measured. The allowable values are: -

PS6000 FS
PS6000_PS
PS6000 NS
PS6000_US
PS6000_ N5
PS6000_S

segnent | ndex, the number of the memory segment for which the

information is required.
Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGQVENT_QUT_OF RANGE
Pl CO_NULL_PARAMETER
Pl CO_NO SAMPLES AVAI LABLE
Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

34 Programming with the PicoScope 6000 Series

3.9.13 ps6000GetTriggerTimeOffset64
Pl CO_STATUS ps6000Get Tri gger Ti meOrf f set 64

(
short handl| e,
_int64 * tinme,
PS6000_TIME UNITS * tinmeUnits,
unsi gned | ong segnent | ndex
)

This function gets the time, as a single 64-bit value, at which the trigger occurred.
Call it after block-mode data has been captured or when data has been retrieved from
a previous block-mode capture. A 32-bit version of this function,

ps6000GetTriggerTimeOffset, is also available.

Applicability |Block mode, rapid block mode

Arguments handl e, the handle of the required device
ti me, on exit, the time at which the trigger point occurred

timeUnits, on exit, the time units in which time is measured. The
possible values are: -

PS6000 FS

PS6000 PS

PS6000 NS

PS6000 US

PS6000 M

PS6000 S

segnent | ndex, the number of the memory segment for which the
information is required
Returns PI CO_ XK
PI CO | NVALI D HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGVENT _OUT_OF_ RANGE
Pl CO NULL_PARANMETER
Pl CO_NO _SAMPLES AVAI LABLE
Pl CO DRI VER_FUNCTI ON

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

35

3.9.14 ps6000GetUnitinfo
Pl CO STATUS ps6000Get Uni t I nf o

(

short
char

short
short

handl e,
* string,
stringLengt h,
* requiredSi ze

PICOINFO info

)

This function retrieves information about the specified oscilloscope. If the device fails
to open, only the driver version and error code are available to explain why the last
open unit call failed.

Applicability |All modes
Arguments handl e, the handle of the device from which information is
required. If an invalid handle is passed, the error code from the last
unit that failed to open is returned.
string, on exit, the unit information string selected specified by
the i nf o argument. If stri ng is NULL, only requi r edSi ze is
returned.
stringlLength, the maximum number of chars that may be
written to st ri ng.
requi redSi ze, on exit, the required length of the stri ng array.
i nf o, a number specifying what information is required. The
possible values are listed in the table below.
Returns Pl CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_NULL_PARAMETER
Pl CO_I NVALI D_I NFO
Pl CO_| NFO_UNAVAI LABLE
Pl CO_DRI VER_FUNCTI ON
info Example
0 |PI CO DRI VER VERSI ON - Version number of PicoScope 6000 |1,0,0,1
DLL
1 |PICO USB VERSI ON - Type of USB connection to device: 1.1 or|2. 0
2.0
2 |PI CO_ HARDWARE_VERSI ON - Hardware version of device 1
3 |PI CO VARI ANT | NFO - Model number of device 6403
4 |PI CO BATCH AND SERI AL - Batch and serial number of device |KJL87/ 6
5 |PI CO CAL_DATE - Calibration date of device 30Sep09
6 |PI CO KERNEL_ VERSI ON - Version of kernel driver 1,1,2,4
7 |PI CO DI G TAL_HARDWARE VERSI ON - Hardware version of the|l
digital section
8 |PI CO_ANALOGUE HARDWARE VERSI ON - Hardware version of |1
the analogue section

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

36 Programming with the PicoScope 6000 Series

3.9.15 ps6000GetValues
Pl CO_STATUS ps6000Cet Val ues

(
short handl| e,
unsi gned | ong startl ndex,
unsi gned | ong * noCO Sampl es,
unsi gned | ong downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
unsi gned | ong segnent | ndex,
short * overfl ow
)

This function returns block-mode data, with or without downsampling, starting at the
specified sample number. It is used to get the stored data from the driver after data
collection has stopped.

Applicability Block mode, rapid block mode
Arguments handl e, the handle of the required device.

start | ndex, a zero-based index that indicates the start point for

data collection. It is measured in sample intervals from the start of
the buffer.

nof Sanpl es, on entry, the number of samples required. On exit,
the actual number retrieved. The number of samples retrieved will
not be more than the number requested, and the data retrieved
always starts with the first sample captured.

downSanpl eRat i 0, the downsampling factor that will be applied to
the raw data.

downSanpl eRat i oMbde, which downsampling mode to use. The
available values are: -

PS6000 RATI O MODE NONE (downSanpl eRat i o is ignored)

PS6000 RATI O MODE AGGREGATE

PS6000_RATI O MODE_AVERAGE

PS6000_ RATI O MODE DECI MATE
AGGREGATE, AVERAGE, and DECI MATE are single-bit constants that
can be ORed to apply multiple downsampling modes to the same
data.

segnent | ndex, the zero-based number of the memory segment
where the data is stored.

over fl ow, on exit, a set of flags that indicate whether an
overvoltage has occurred on any of the channels. It is a bit field with
bit O denoting Channel A.

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

37

3.9.15.1

Returns

Pl CO_OK
Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_DEVI CE_SAVPLI NG

Pl CO_NULL_PARAVETER

Pl CO_SEGVENT_OUT_OF RANGE
Pl CO_| NVALI D_PARAVETER

Pl CO_TOO_MANY_SAMPLES

Pl CO_DATA_NOT_AVAI LABLE
Pl CO_STARTI NDEX_| NVALI D
Pl CO_| NVALI D_SAVPLERATI O
Pl CO_| NVALI D_CALL

Pl CO_NOT_RESPONDI NG

Pl CO_MEMORY

Pl CO_RATI O_MODE_NOT_SUPPORTED
Pl CO_DRI VER_FUNCTI ON

Downsampling modes

Various methods of data reduction, or downsampling, are possible with the
PicoScope 6000 Series oscilloscopes. The downsampling is done at high speed by
dedicated hardware inside the scope, making your application faster and more
responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions
such as ps6000GetValues. The following modes are available:

PS6000_RATI O_MODE_AGGREGATE

PS6000_RATI O_MODE_AVERAGE

PS6000_RATI O_MODE_DECI MATE

Reduces every block of n values to just two
values: a minimum and a maximum. The
minimum and maximum values are
returned in two separate buffers.

Reduces every block of n values to a single
value representing the average (arithmetic
mean) of all the values.

Reduces every block of n values to just the
first value in the block, discarding all the
other values.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

38

Programming with the PicoScope 6000 Series

3.9.16

ps6000GetValuesAsync

Pl CO_STATUS ps6000Cet Val uesAsync

(
short handl| e,
unsi gned | ong startl ndex,
unsi gned | ong noOr Sanpl es,
unsi gned | ong downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
unsi gned | ong segnent | ndex,
voi d * | pDat aReady,
voi d * pPar anet er

)

This function returns data either with or without downsampling, starting at the
specified sample number. It is used to get the stored data from the scope after data
collection has stopped. It returns the data using a callback.

Applicability |Streaming mode and block mode

Arguments handl e, the handle of the required device

startlndex: see ps6000GetValues

nor Sanpl es: see ps6000GetValues
downSanpl eRat i 0: see ps6000GetValues
downSanpl eRat i oMbde: see ps6000GetValues
segnent | ndex: see ps6000GetValues

| pDat aReady, a pointer to the user-supplied function that will be
called when the data is ready. This will be a ps6000DataReady
function for block-mode data or a ps6000StreamingReady function
for streaming-mode data.

pPar anet er, a void pointer that will be passed to the callback

function. The data type is determined by the application.
Returns PI CO_ X

Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAMPLES AVAI LABLE

Pl CO _DEVI CE_SAMPLI NG

Pl CO NULL_ PARAMETER

Pl CO_STARTI NDEX_| NVALI D

Pl CO_SEGVENT _OUT_OF_RANGE

Pl CO | NVALI D_PARAMETER

Pl CO_DATA NOT_AVAI LABLE

Pl CO_| NVALI D_SAVPLERATI O

PI CO_| NVALI D_CALL

Pl CO DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

39

3.9.17 ps6000GetValuesBulk
Pl CO_STATUS ps6000Cet Val uesBul k

(
short handl e,
unsi gned | ong * noOf Sanpl es,
unsi gned | ong fronSegnent | ndex,
unsi gned | ong t oSegnent | ndex,
unsi gned | ong downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
short * overfl ow

)

This function retrieves waveforms captured using rapid block mode. The waveforms
must have been collected sequentially and in the same run. This method of collection
does not support downsampling.

Applicability
Arguments

Returns

Rapid block mode

handl e, the handle of the device

* noCf Sanpl es, on entry, the number of samples required; on
exit, the actual number retrieved. The number of samples retrieved
will not be more than the number requested. The data retrieved
always starts with the first sample captured.

f r onSegnent | ndex, the first segment from which the waveform
should be retrieved

t oSegnent | ndex, the last segment from which the waveform
should be retrieved

downSanpl eRati 0: see ps6000GetValues
downSanpl eRat i oMbde: see ps6000GetValues

* overfl ow, an array of integers equal to or larger than the
number of waveforms to be retrieved. Each segment index has a
corresponding entry in the over f | ow array, with overf| ow 0]
containing the flags for the segment numbered f r onSegnent | ndex

and the last element in the array containing the flags for the segment

numbered t 0Segnment | ndex. Each element in the array is a bit field
as described under ps6000GetValues.

Pl CO &K

Pl CO_| NVALI D_HANDLE

Pl CO_| NVALI D_PARAMETER

Pl CO_SEGVENT_OUT_OF_RANGE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_STARTI NDEX_| NVALI D

Pl CO_NOT_RESPONDI NG

Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

40

Programming with the PicoScope 6000 Series

3.9.18 ps6000GetValuesBulkAsync
Pl CO_STATUS ps6000Get Val uesBul kAsync

(
short handl e,
unsi gned | ong startl ndex,
unsi gned | ong * noOF Sanpl es,
unsi gned | ong downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
unsi gned | ong f r onSegnent | ndex,
unsi gned | ong t oSegnent | ndex,
short * overfl ow

)

This function retrieves more than one waveform at a time in rapid block mode after
data collection has stopped. The waveforms must have been collected sequentially and

in the same run. The data is returned using a callback.

Applicability |Rapid block mode

Arguments

Returns

handl e, the handle of the device

startlndex: see ps6000GetValues

* noOr Sanpl es: see ps6000GetValues
downSanpl eRati o: see ps6000GetValues
downSanpl eRat i oMbde: see ps6000GetValues
f ronSegnent | ndex: see ps6000GetValuesBulk
t oSegnment | ndex: see ps6000GetValuesBulk
overfl ow. see ps6000GetValuesBulk

Pl CO_OK

Pl CO_I NVALI D_HANDLE

Pl CO_I NVALI D_PARAMETER

Pl CO_SEGVENT_QUT_OF_RANGE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_STARTI NDEX_| NVALI D

Pl CO_NOT_RESPONDI NG

Pl CO_DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 41

3.9.19 ps6000GetValuesOverlapped
Pl CO_STATUS ps6000Get Val uesOver | apped

(
short handl e,
unsi gned | ong start | ndex,
unsi gned | ong * noOf Sampl es,
unsi gned | ong downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
unsi gned | ong segnent | ndex,
short * overfl ow
)

This function allows you to make a deferred data-collection request, which will later be
executed, and the arguments validated, when you call ps6000RunBlock in block mode.
The advantage of this function is that the driver makes contact with the scope only
once, when you call ps6000RunBlock, compared with the two contacts that occur
when you use the conventional ps6000RunBlock, ps6000GetValues calling sequence.
This slightly reduces the dead time between successive captures in block mode.

After calling ps6000RunBlock, you can optionally use ps6000GetValues to request
further copies of the data. This might be required if you wish to display the data with
different data reduction settings.

Applicability Block mode
Arguments handl e, the handle of the device

startlndex: see ps6000GetValues

* noCf Sanpl es: see ps6000GetValues

downSanpl eRati 0: see ps6000GetValues

downSanpl eRat i oMbde: see ps6000GetValues

segnent | ndex: see ps6000GetValues

* overfl ow see ps6000GetValuesBulk
Returns Pl CO_OK

Pl CO_I NVALI D_HANDLE

Pl CO_| NVALI D_PARAMETER

Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

42

Programming with the PicoScope 6000 Series

3.9.20 ps6000GetValuesOverlappedBulk

Pl CO_STATUS ps6000Get Val uesOver | appedBul k

handl e,
startl| ndex,

downSanpl eRat i o,
downSanpl eRat i oMbde,
f r onSegnent | ndex,
t oSegnent | ndex,

* overfl ow

(
short
unsi gned | ong
unsi gned | ong * noOf Sampl es,
unsi gned | ong
PS6000_RATI O_MODE
unsi gned | ong
unsi gned | ong
short
)

This function allows you to make a deferred data-collection request, which will later be
executed, and the arguments validated, when you call ps6000RunBlock in rapid block
mode. The advantage of this method is that the driver makes contact with the scope
only once, when you call ps6000RunBlock, compared with the two contacts that occur
when you use the conventional ps6000RunBlock, ps6000GetValues calling sequence.
This slightly reduces the dead time between successive captures in rapid block mode.

After calling ps6000RunBlock, you can optionally use ps6000GetValues to request
further copies of the data. This might be required if you wish to display the data with

different data reduction settings.

Applicability |Rapid block mode

downSanpl eRati 0: see ps6000GetValues
downSanpl eRat i oMbde: see ps6000GetValues
f ronSegnent | ndex: see ps6000GetValuesBulk
t oSegnment | ndex: see ps6000GetValuesBulk

* overfl ow, see ps6000GetValuesBulk

Arguments handl e, the handle of the device
startl ndex: see ps6000GetValues
* noOF Sanpl es: see ps6000GetValues
Returns Pl CO_K

Pl CO_| NVALI D_HANDLE
Pl CO_I NVALI D_PARAMETER
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 43

3.9.21 ps6000GetValuesTriggerTimeOffsetBulk
Pl CO_ STATUS ps6000Get Val uesTri gger Ti mek f set Bul k

(
short handl e,
unsi gned | ong * timesUpper,
unsi gned | ong * tinesLower,
PS6000_TIME_UNITS * tineUnits,
unsi gned | ong f ronSegnent | ndex,
unsi gned | ong t oSegnent | ndex

)

This function retrieves the time offsets, as lower and upper 32-bit values, for
waveforms obtained in rapid block mode.

This function is provided for use in programming environments that do not support
64-bit integers. If your programming environment supports this data type, it is easier
to use ps6000GetValuesTriggerTimeOffsetBulk64.

Applicability |Rapid block mode

Arguments handl e, the handle of the device

* timesUpper, an array of integers. On exit, the most significant
32 bits of the time offset for each requested segment index. ti nmes
[0] will hold the f r onSegnent | ndex time offset and the last

ti nmes index will hold the t 0Segnent | ndex time offset. The array
must be long enough to hold the number of requested times.

* tinmesLower, an array of integers. On exit, the least-significant

32 bits of the time offset for each requested segment index. ti nmes
[0] will hold the f r onSegnent | ndex time offset and the last

ti nmes index will hold the t 0Segnent | ndex time offset. The array
size must be long enough to hold the number of requested times.

* tinmeUnits, an array of integers. The array must be long enough
to hold the number of requested times. On exit, t i meUni t s[0] will
contain the time unit for f r omSegnent | ndex and the last element
will contain the time unit for t oSegnent | ndex.

f r onSegnent | ndex, the first segment for which the time offset is
required

t 0Segnent | ndex, the last segment for which the time offset is

required. If t oSegnment | ndex is less than f r omSegnent | ndex then

the driver will wrap around from the last segment to the first.
Returns Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO NULL_PARAMETER

Pl CO_DEVI CE_SAMPLI NG

Pl CO_SEGVENT_OUT_OF_RANGE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

44

Programming with the PicoScope 6000 Series

3.9.22 ps6000GetValuesTriggerTimeOffsetBulk 64
Pl CO STATUS ps6000Get Val uesTri gger Ti meX f set Bul k64

(
short handl e,
__int64 * tines,
PS6000_TIME_ UNITS * tinmeUnits,
unsi gned | ong f r onSegnent | ndex,
unsi gned | ong t oSegnent | ndex

)

This function retrieves the 64-bit time offsets for waveforms captured in rapid block

mode.

A 32-bit version of this function, ps6000GetValuesTriggerTimeOffsetBulk, is available
for use with programming languages that do not support 64-bit integers.

Applicability |Rapid block mode

Arguments

Returns

handl e, the handle of the device

* tines, an array of integers. On exit, this will hold the time offset
for each requested segment index. ti nes[0] will hold the time
offset for f ronSegnent | ndex, and the lastti nmes index will hold
the time offset for t 0Segnent | ndex. The array must be long enough
to hold the number of times requested.

* tinmeUnits, an array of integers long enough to hold the number
of requested times. ti meUnit s[0] will contain the time unit for

f r onSegnent | ndex, and the last element will contain the

t oSegnent | ndex.

f r onSegnent | ndex, the first segment for which the time offset is
required. The results for this segment will be placed in t i nes[0]
and tineUnits[0].

t oSegnent | ndex, the last segment for which the time offset is
required. The results for this segment will be placed in the last
elements of thetines andtineUnits arrays. If

t oSegnent | ndex is less than f r onSegnent | ndex then the driver
will wrap around from the last segment to the first.

Pl CO X

Pl CO_| NVALI D_HANDLE

Pl CO_ NULL_PARAMETER

Pl CO_DEVI CE_SAMPLI NG

Pl CO_SEGVENT _OUT_OF_ RANGE

Pl CO_NO SAMPLES_ AVAI LABLE

Pl CO DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 45

3.9.23 ps6000IsReady
Pl CO_STATUS ps6000I sReady

short handl| e,
short * ready

)

This function may be used instead of a callback function to receive data from
ps6000RunBl ock. To use this method, pass a NULL pointer as the | pReady
argument to ps6000RunBI ock. You must then poll the driver to see if it has finished
collecting the requested samples.

Applicability |Block mode
Arguments handl e, the handle of the required device

r eady: output: indicates the state of the collection. If zero, the

device is still collecting. If non-zero, the device has finished collecting
and ps6000Cet Val ues can be used to retrieve the data.

Returns

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

46

Programming with the PicoScope 6000 Series

3.9.24 ps6000IsTriggerOrPulseWidthQualifierEnabled
Pl CO_STATUS ps6000I sTri gger O Pul seW dt hQual i fi er Enabl ed
short handl e,
short * triggerEnabl ed,
short * pul seWdthQualifierEnabl ed
)
This function discovers whether a trigger, or pulse width triggering, is enabled.
Applicability |Call after setting up the trigger, and just before calling either
ps6000RunBlock or ps6000RunStreaming.
Arguments handl e, the handle of the required device
tri gger Enabl ed, on exit, indicates whether the trigger will
successfully be set when ps6000RunBlock or ps6000RunStreaming is
called. A non-zero value indicates that the trigger is set, zero that
the trigger is not set.
pul seW dt hQual i fi er Enabl ed, on exit, indicates whether the
pulse width qualifier will successfully be set when ps6000RunBlock or
ps6000RunStreaming is called. A non-zero value indicates that the
pulse width qualifier is set, zero that the pulse width qualifier is not
set.
Returns Pl CO_K
Pl CO_| NVALI D_HANDLE
Pl CO NULL_PARANMETER
Pl CO_DRI VER_FUNCTI ON
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 47

3.9.25 ps6000MemorySegments
Pl CO_STATUS ps6000Menor ySegnent s

short handl e
unsi gned | ong nSegnent s,
unsigned long * nMaxSanpl es

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each
capture fills the scope's available memory. This function allows you to divide the
memory into a number of segments so that the scope can store several waveforms
sequentially.

Applicability |All modes
Arguments handl e, the handle of the required device

nSegnent s, the number of segments required:
PicoScope 1 to 32 768

6402:

PicoScope 1 to 125 000
6402A:

PicoScope 1 to 250 000
6402B:

PicoScope 1 to 1 000 000
6403:

PicoScope 1 to 250 000
6403A:

PicoScope 1 to 500 000
6403B:

PicoScope 1 to 1 000 000
6404:

PicoScope 1 to 500 000
6404A:

PicoScope 1 to 1 000 000
6404B:

PicoScope 1 to 1 000 000
6407:

* nMaxSanpl es, on exit, the number of samples available in each
segment. This is the total number over all channels, so if more than
one channel is in use then the number of samples available to each
channel is nMaxSanpl es divided by the number of channels.

Returns PI CO_ X
Pl CO_USER_CALLBACK
Pl CO_| NVALI D_HANDLE
Pl CO_TOO MANY SEGVENTS
Pl CO_MEMORY
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

48

Programming with the PicoScope 6000 Series

3.9.26 ps6000NoOfStreamingValues
Pl CO_STATUS ps6000NoCF St ream ngVal ues

short

handl e,

unsi gned | ong * noOf Val ues

)

This function returns the number of samples available after data collection in
streaming mode. Call it after calling ps6000Stop.

Applicability
Arguments

Returns

Streaming mode

handl e, the handle of the required device

* noCf Val ues, on exit, the number of samples
Pl CO K

Pl CO_| NVALI D_HANDLE

Pl CO NULL_ PARAMETER

Pl CO_ NO SAMPLES AVAI LABLE

Pl CO_NOT_USED

Pl CO _BUSY

Pl CO DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 49

3.9.27 ps60000penUnit
Pl CO_STATUS ps6000QpenUni t

short * handl e,
char * seri al

)

This function opens a PicoScope 6000 Series scope attached to the computer. The
maximum number of units that can be opened depends on the operating system, the
kernel driver and the computer.

Applicability |All modes

Arguments * handl e, on exit, the result of the attempt to open a scope:
-1 : if the scope fails to open
0 : if no scope is found

> 0 : a number that uniquely identifies the scope
If a valid handle is returned, it must be used in all subsequent calls
to API functions to identify this scope.

serial, on entry, a null-terminated string containing the serial
number of the scope to be opened. If seri al is NULL then the
function opens the first scope found; otherwise, it tries to open the
scope that matches the string.
Returns Pl CO_ K
Pl CO_ OS_NOT_SUPPORTED
Pl CO_OPEN_OPERATI ON_| N_PROGRESS
Pl CO_EEPROM CORRUPT
Pl CO_ KERNEL_DRI VER TOO QLD
Pl CO FW FAI L
Pl CO_MAX_UNI TS _OPENED
Pl CO_NOT_FOUND (if the specified unit was not found)
Pl CO_NOT_RESPONDI NG
Pl CO_MEMORY_FAI L
Pl CO_ANALOG BOARD
Pl CO_CONFI G_FAI L_AWG
Pl CO I NI TI ALI SE_FPGA

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

50

Programming with the PicoScope 6000 Series

3.9.28

ps60000penUnitAsync
Pl CO STATUS ps60000penUni t Async

short * status
char * seri al

)

This function opens a scope without blocking the calling thread. You can find out

when it has finished by periodically calling ps60000penUnitProgress until that function
returns a non-zero value.

Applicability |All modes

Arguments * status, a status code:

0 if the open operation was disallowed because another open
operation is in progress
1 if the open operation was successfully started

* serial: see ps60000penUnit

Returns Pl CO_ K

Pl CO_OPEN_OPERATI ON_| N_PROGRESS
Pl CO_OPERATI ON_FAI LED

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 51

3.9.29 ps60000penUnitProgress
Pl CO_STATUS ps60000CpenUni t Progress

short * handl e,
short * progressPercent,
short * conplete

)

This function checks on the progress of a request made to ps60000penUnitAsync to
open a scope.
Applicability |Use after ps60000penUnitAsync

Arguments * handl e: see ps60000penUnit. This handle is valid only if the
function returns Pl CO_OK.

* progressPercent, on exit, the percentage progress towards

opening the scope. 100% implies that the open operation is
complete.

* conpl ete, setto 1 when the open operation has finished
Returns Pl CO_OK

Pl CO_NULL_PARAMETER

Pl CO_OPERATI ON_FAI LED

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

52 Programming with the PicoScope 6000 Series

3.9.30 ps6000RunBlock
Pl CO_STATUS ps6000RunBI ock

(
short handl e,
unsi gned | ong noCF PreTri gger Sanpl es,
unsi gned | ong noCf Post Tri gger Sanpl es,
unsi gned | ong ti mebase,
short over sanpl e,
| ong * tinmel ndi sposeds,
unsi gned | ong segment | ndex,
ps6000Bl ockReady | pReady,
voi d * pPar anet er
)

This function starts collecting data in block mode. For a step-by-step guide to this
process, see Using block mode.

The number of samples is determined by noCf Pr eTr i gger Sanpl es and
noOf Post Tri gger Sanpl es (see below for details). The total number of samples
must not be more than the size of the segment referred to by segnent | ndex.

Applicability |Block mode, rapid block mode

Arguments handl e, the handle of the required device.

nof PreTri gger Sanpl es, the number of samples to return
before the trigger event. If no trigger has been set then this
argument is ignored and noCOf Post Tri gger Sanpl es specifies the
maximum number of samples to collect.

noOf Post Tri gger Sanpl es, the number of samples to be taken
after a trigger event. If no trigger event has been set then this
specifies the maximum number of samples to be taken. If a trigger
condition has been set, this specifies the number of samples to be
taken after a trigger has fired, and the number of samples to be
collected is then: -

noC PreTri gger Sanpl es + noOf Post Tri gger Sanpl es

ti mebase, a number in the range O to 23%2-1. See the guide to
calculating timebase values.

over sanpl e, the oversampling factor, a number in the range 1 to
256.

* tinmel ndi sposedMs, on exit, the time, in milliseconds, that the
scope will spend collecting samples. This does not include any auto
trigger timeout. If this pointer is null, nothing will be written here.

segnent | ndex, zero-based, specifies which memory segment to
use.

| pReady, a pointer to the ps6000Bl ockReady callback function
that the driver will call when the data has been collected. To use the
ps6000I sReady polling method instead of a callback function, set
this pointer to NULL.

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 53

* pPar anet er, a void pointer that is passed to the

ps6000Bl ockReady callback function. The callback can use this

pointer to return arbitrary data to the application.
Returns PI CO_OK

Pl CO_ | NVALI D_HANDLE

Pl CO USER CALLBACK

Pl CO SEGQVENT_QUT_OF RANGE

Pl CO_| NVALI D_CHANNEL

Pl CO | NVALI D_TRI GGER_CHANNEL

Pl CO_| NVALI D_CONDI TI ON_CHANNEL

Pl CO TOO MANY_SAMPLES

Pl CO_ | NVALI D_TI MEBASE

Pl CO_NOT_RESPONDI NG

Pl CO_CONFI G_FAI L

Pl CO | NVALI D_PARAMETER

Pl CO_NOT_RESPONDI NG

Pl CO TRI GGER_ERROR

Pl CO DRI VER_FUNCTI ON

Pl CO EXTERNAL FREQUENCY | NVALI D

Pl CO FW FAI L

Pl CO_NOT_ENOUGH_SEGVENTS (in Bulk mode)

Pl CO TRI GGER_AND EXTERNAL_ CLOCK CLASH

Pl CO PWQ AND EXTERNAL CLOCK CLASH

Pl CO PULSE W DTH QUALI FI ER

Pl CO_SEGQVENT _OUT_OF_RANGE (in Overlapped mode)

Pl CO_STARTI NDEX_| NVALI D (in Overlapped mode)

Pl CO_| NVALI D_SAMPLERATI O (in Overlapped mode)

Pl CO_CONFI G_FAI L

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

54

Programming with the PicoScope 6000 Series

3.9.31 ps6000RunStreaming
Pl CO_STATUS ps6000RunSt ream ng
(
short handl| e,
unsi gned | ong * sanpl el nterval,
PS6000_TIME_UNITS sanplelnterval TineUnits
unsi gned | ong maxPr eTri gger Sanpl es,
unsi gned | ong maxPost Tr i gger Sanpl es,
short aut oSt op,
unsi gned | ong downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
unsi gned | ong overvi ewBufferSi ze
)
This function tells the oscilloscope to start collecting data in streaming mode. When
data has been collected from the device it is downsampled if necessary and then
delivered to the application. Call ps6000GetStreaminglLatestValues to retrieve the
data. See Using streaming mode for a step-by-step guide to this process.
When a trigger is set, the total number of samples stored in the driver is the sum of
maxPr eTri gger Sanpl es and maxPost Tri gger Sanpl es. If aut oSt op is false
then this will become the maximum number of samples without downsampling.
Applicability |[Streaming mode
Arguments handl e, the handle of the required device.
* sanpl el nterval , on entry, the requested time interval
between samples; on exit, the actual time interval used.
sampl el nterval Ti neUni ts, the unit of time used for
sanpl el nt erval . Use one of these values:
PS6000_FS
PS6000 PS
PS6000_NS
PS6000 _US
PS6000_ M5
PS6000_S
maxPr eTri gger Sanpl es, the maximum number of raw samples
before a trigger event for each enabled channel. If no trigger
condition is set this argument is ignored.
maxPost Tr i gger Sanpl es, the maximum number of raw samples
after a trigger event for each enabled channel. If no trigger condition
is set, this argument states the maximum number of samples to be
stored.
aut oSt op, a flag that specifies if the streaming should stop when
all of maxSanpl es have been captured.
downSanpl eRati 0: see ps6000GetValues
downSanpl eRat i oMbde: see ps6000GetValues
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

55

Returns

over vi ewBuf f er Si ze, the size of the overview buffers. These are
temporary buffers used for storing the data before returning it to the
application. The size is the same as the buf f er Lt h value passed

to ps6000SetDataBuffer.

Pl CO X

Pl CO_| NVALI D_HANDLE

Pl CO USER CALLBACK

Pl CO NULL_ PARAMETER

Pl CO | NVALI D_PARAMETER

Pl CO_STREAM NG_FAI LED

Pl CO_NOT_RESPONDI NG

Pl CO_TRI GGER_ERROR

Pl CO_ | NVALI D_SAVPLE | NTERVAL

PI CO | NVALI D_BUFFER

Pl CO DRI VER_FUNCTI ON

Pl CO_EXTERNAL FREQUENCY | NVALI D
Pl CO FW FAI L

Pl CO TRI GGER_AND EXTERNAL CLOCK CLASH
Pl CO PWQ AND EXTERNAL CLOCK CLASH
Pl CO_MEMORY

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

56

Programming with the PicoScope 6000 Series

3.9.32 ps6000SetChannel

Pl CO_ STATUS ps6000Set Channel

(
short handl e,
PS6000_CHANNEL channel ,
short enabl ed,
PS6000_COUPLI NG type,
PS6000_RANGE range,
fl oat anal ogue f set ,
PS6000 BANDW DTH LI M TER bandwi dt h

)

This function specifies whether an input channel is to be enabled, its input coupling
type, voltage range, analog offset and bandwidth limit. Some of the arguments within
this function have model—specific values. Please consult the relevant section below
according to the model you have.

Applicability
Arguments

All modes

handl e, the handle of the required device

channel , the channel to be configured. The values are:
PS6000 CHANNEL A: Channel A input
PS6000 CHANNEL B: Channel B input
PS6000 CHANNEL C: Channel C input
PS6000 CHANNEL D: Channel input

enabl ed, whether or not to enable the channel. The values are:
TRUE: enable
FALSE: do not enable

t ype, the impedance and coupling type. The values supported
are:
PicoScope 6402/6403/6404 (including A/B models)
PS6000_AC, 1 megohm impedance, AC coupling. The

channel accepts input frequencies from about 1 hertz up to its
maximum -3 dB analog bandwidth.

PS6000_DC 1M 1 megohm impedance, DC coupling. The
scope accepts all input frequencies from zero (DC) up to its
maximum -3 dB analog bandwidth.

PS6000_DC 50R, DC coupling, 50 ohm impedance. In this

mode the +10 volt and +20 volt input ranges are not
available.
PicoScope 6407

PS6000_ DC 50R, DC coupling, 50 ohm impedance.

range, the input voltage range:
PicoScope 6402/6403/6404 (including A/B models)
PS6000 50WV: 50 mV
PS6000 100MWV: %100 mV
PS6000 200MWV: %200 mV
PS6000 500MWV: %500 mV
PS6000 1V: +1V

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 57

Returns

PS6000_2V: +2V

PS6000 _5V: +5V

PS6000_10V: +10V *

PS6000_20V: +20V *

* not available when type = PS6000_DC 50R
PicoScope 6407

PS6000_100MWV: +100 mV

anal ogue f set, a voltage to add to the input channel before
digitization.

PicoScope 6402/6403 (including A/B models)

The allowable range of offsets depends on the input range
selected for the channel, as follows:

50 mV to 200 mV: M N_ANALOGUE OFFSET 50MV_200MV to
MAX_ANALOGUE_OFFSET_50MV_200M/

500 mV to 2 V: M N_ANALOGUE_OFFSET_500MV_2V to
MAX_ANALOGUE OFFSET 500V 2V

5V to20V: M N ANALOGUE OFFSET 5V 20V to
MAX ANALOGUE OFFSET 5V 20V. (When type =
PS6000_DC 50R, the allowable range is reduced to that of

the 50 mV to 200 mV input range, i.e.
M N _ANALOGUE _OFFSET 50MV_200MV to
MAX_ANALOGUE_OFFSET _50MWV_200MWV) .

Allowable range of offsets can also be returned by

ps6000Get Anal ogue f set for the device currently connected.
PicoScope 6404 (including A/B models)

Allowable range of offsets is returned by

ps6000Get Anal ogue f set for the device currently connected.
PicoScope 6407

anal ogueOf f set, 6407 does not use anal ogueO f set ,
therefore this should be set to 0.

bandwi dt h, the bandwidth limiter setting:

PicoScope 6402/6403 (including A/B models)

PS6000_BW FULL: the connected scope's full specified

bandwidth

PS6000_BW 20MHZ: -3 dB bandwidth limited to 20 MHz
PicoScope 6404 (including A/B models)

PS6000_BW FULL: the scope's full specified bandwidth

PS6000_BW 25MHZ: -3 dB bandwidth limited to 25 MHz
PicoScope 6407

PS6000_BW FULL: the scope’'s full specified bandwidth

Pl CO_OK
Pl CO_USER_CALLBACK

Pl CO_| NVALI D_HANDLE

PI CO_| NVALI D_CHANNEL

Pl CO_| NVALI D_VOLTAGE_RANGE
PI CO_I| NVALI D_COUPLI NG

Pl CO_| NVALI D_ANALOGUE_OFFSET
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

58 Programming with the PicoScope 6000 Series

3.9.33 ps6000SetDataBuffer
Pl CO_STATUS ps6000Set Dat aBuf f er

(
short handl| e,
PS6000_CHANNEL channel ,
short * buffer,
unsi gned | ong buf f er Lt h,
PS6000_RATI O MODE downSanpl eRat i oMode
)

This function tells the driver where to store the data, either unprocessed or
downsampled, that will be returned after the next call to one of the GetValues
functions. The function allows you to specify only a single buffer, so for aggregation
mode, which requires two buffers, you need to call ps6000SetDataBuffers instead.

You must allocate memory for the buffer before calling this function.

Applicability |Block, rapid block and streaming modes. All downsampling modes
except aggregation.
Arguments handl e, the handle of the required device

channel , the channel you want to use with the buffer. Use one of
these values:

PS6000 CHANNEL A

PS6000 CHANNEL B

PS6000 CHANNEL C

PS6000 CHANNEL D

buf f er, the location of the buffer
buf f er Lt h, the size of the buf fer array

downSanpl eRat i oMbde, the downsampling mode. See
ps6000GetValues for the available modes, but note that a single call
to ps6000SetDataBuffer can only associate one buffer with one
downsampling mode. If you intend to call ps6000GetValues with
more than one downsampling mode activated, then you must call
ps6000SetDataBuffer several times to associate a separate buffer
with each downsampling mode.

Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_| NVALI D_CHANNEL
Pl CO_RATI O_MODE_NOT_SUPPCRTED
Pl CO DRI VER_FUNCTI ON
Pl CO | NVALI D_PARAMETER

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 59

3.9.34 ps6000SetDataBufferBulk
Pl CO_STATUS ps6000Set Dat aBuf f er Bul k

short handl e,

PS6000_ CHANNEL channel ,

short * puffer,

unsi gned | ong buf f erLth,

unsi gned | ong wavef orm
PS6000_RATI O MODE downSanpl eRat i oMbde
)

This function allows you to associate a buffer with a specified waveform number and
input channel in rapid block mode. The number of waveforms captured is determined
by the nCapt ur es argument sent to ps6000SetNoOfCaptures. There is only one
buffer for each waveform because the only downsampling mode that requires two
buffers, aggregation mode, is not available in rapid block mode. Call one of the
GetValues functions to retrieve the data after capturing.

Applicability |Rapid block mode without aggregation.

Arguments handl e, the handle of the device
channel , the input channel to use with this buffer
buf f er, an array in which the captured data is stored
buf f er Lt h, the size of the buffer

wavef or m an index to the waveform number.
Range: O to nCaptures -1

downSanpl eRat i oMbde: see ps6000GetValues

Returns PI CO_ XK
PI CO_| NVALI D HANDLE
Pl CO_| NVALI D_CHANNEL
PI CO_I| NVALI D_PARAMETER
Pl CO_RATI O MODE_NOT_SUPPORTED
Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

60

Programming with the PicoScope 6000 Series

3.9.35 ps6000SetDataBuffers
Pl CO_STATUS ps6000Set Dat aBuf f er s

(

short handl| e,

PS6000_CHANNEL channel ,

short * puf f er Max,

short buf ferM n,

unsi gned | ong buf f er Lt h,

PS6000_ RATI O MODE downSanpl eRat i oMode
)

This function tells the driver the location of one or two buffers for receiving data. You
need to allocate memory for the buffers before calling this function. If you do not need
two buffers, because you are not using aggregate mode, then you can optionally use
ps6000SetDataBuffer instead.

Applicability Block and streaming modes with aggregation.

Arguments

Returns

handl e, the handle of the required device.

channel , the channel for which you want to set the buffers. Use
one of these constants:

PS6000 CHANNEL A

PS6000 CHANNEL B

PS6000 CHANNEL C

PS6000 CHANNEL D

* puf f er Max, a buffer to receive the maximum data values in
aggregation mode, or the non-aggregated values otherwise.

* pufferM n, a buffer to receive the minimum aggregated data
values. Not used in other downsampling modes.

buf f er Lt h, the size of the buf f er Max and buf ferM n arrays.
downSanpl eRat i oMbde: see ps6000GetValues

Pl CO_OK

Pl CO_I| NVALI D_HANDLE

PI CO_| NVALI D_CHANNEL

Pl CO_RATI O_MODE_NOT_SUPPORTED
Pl CO_DRI VER_FUNCTI ON

PI CO_I| NVALI D_PARAVETER

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 61

3.9.36 ps6000SetDataBuffersBulk
Pl CO_STATUS ps6000Set Dat aBuf f er sBul k

short handl e,

PS6000_ CHANNEL channel ,

short * puf f er Max,

short * pufferMn,

unsi gned | ong buf f er Lt h,

unsi gned | ong wavef orm
PS6000_RATI O MODE downSanpl eRat i oMbde
)

This function tells the driver where to find the buffers for aggregated data for each
waveform in rapid block mode. The number of waveforms captured is determined by
the nCapt ur es argument sent to ps6000SetNoOfCaptures. Call one of the GetValues
functions to retrieve the data after capture. If you do not need two buffers, because
you are not using aggregate mode, then you can optionally use
ps6000SetDataBufferBulk instead.

Applicability |Rapid block mode with aggregation

Arguments handl e, the handle of the device
channel , the input channel to use with the buffer

* puf f er Max, a buffer to receive the maximum data values in
aggregation mode, or the non-aggregated values otherwise

* pufferM n, a buffer to receive the minimum data values in
aggregate mode. Not used in other downsampling modes.

buf f er Lt h, the size of the buffer

wavef or m an index to the waveform number between 0 and
nCaptures -1

downSanpl eRat i oMbde: see ps6000GetValues

Returns Pl CO_OK
PI CO_| NVALI D_HANDLE
Pl CO_I| NVALI D_CHANNEL
Pl CO | NVALI D_PARAMETER
Pl CO_RATI O MODE_NOT_SUPPORTED
Pl CO_ DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

62

Programming with the PicoScope 6000 Series

3.9.37 ps6000SetEts
Pl CO _STATUS ps6000Set Et s
(
short handl e,
PS6000_ETS MODE node,
short et sCycl es,
short etsinterl eave,
| ong * sanpl eTi mePi coseconds
)
This function is used to enable or disable ETS (equivalent-time sampling) and to set
the ETS parameters. See ETS overview for an explanation of ETS mode.
Applicability |Block mode
Arguments handl e, the handle of the required device
node, the ETS mode. Use one of these values:
PS6000_ETS OFF - disables ETS
PS6000_ETS FAST - enables ETS and provides et sCycl es of
data, which may contain data from previously returned cycles
PS6000_ETS SLOW - enables ETS and provides fresh data every
et sCycl es. This mode takes longer to provide each data set, but
the data sets are more stable and are guaranteed to contain only
new data.
et scycl es, the number of cycles to store: the computer can then
select et sl nt er| eave cycles to give the most uniform spread of
samples.
Range: between two and five times the value of et sl nt er | eave,
and not more than PS6000 MAX ETS CYCLES
etslnterl eave, the number of waveforms to combine into a
single ETS capture
Maximum value: PS6000 NMAX | NTERLEAVE
* sanpl eTi mePi coseconds, on exit, the effective sampling
interval of the ETS data. For example, if the captured sample time is
20 ns and et sl nterl eave is 10, then the effective sample time in
ETS mode is 2 ns.
Returns Pl CO_OK
Pl CO_USER _CALLBACK
Pl CO_| NVALI D_HANDLE
Pl CO_| NVALI D_PARAMETER
Pl CO DRI VER_FUNCTI ON
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 63

3.9.38 ps6000SetEtsTimeBuffer
Pl CO STATUS ps6000Set Et sTi meBuf f er

short handl e,
_int64 * buffer,
unsi gned | ong bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the 64-bit timing information for each ETS sample after you run a
block-mode ETS capture.

Applicability ETS mode only.

If your programming language does not support 64-bit data, use the
32-bit version ps6000SetEtsTimeBuffers instead.

Arguments handl e, the handle of the required device

* buffer, an array of 64-bit words, each representing the time in
nanoseconds at which the sample was captured

buf f er Lt h, the size of the buffer array
Returns Pl CO_K

Pl CO | NVALI D HANDLE

Pl CO NULL_PARAMETER

Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

64

Programming with the PicoScope 6000 Series

3.9.39 ps6000SetEtsTimeBuffers
Pl CO STATUS ps6000Set Et sTi neBuffers

(

short

handl e,

unsi gned long * timeUpper,
unsigned long * tineLower,
unsi gned | ong bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the timing information for each ETS sample after you run a block-
mode ETS capture. There are two buffers containing the upper and lower 32-bit parts
of the timing information, to allow programming languages that do not support 64-bit
data to retrieve the timings.

Applicability

Arguments

Returns

ETS mode only.

If your programming language supports 64-bit data then you can
use ps6000SetEtsTimeBuffer instead.

handl e, the handle of the required device

* timeUpper, an array of 32-bit words, each representing the
upper 32 bits of the time in nanoseconds at which the sample was
captured

* tinmeLower, an array of 32-bit words, each representing the
lower 32 bits of the time in nanoseconds at which the sample was
captured

buf f er Lt h, the size of the ti neUpper andti neLower arrays
Pl CO_ K

Pl CO_| NVALI D_HANDLE

Pl CO NULL_PARAMETER

Pl CO_DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 65

3.9.40 ps6000SetExternalClock
Pl CO_STATUS ps6000Set Ext er nal C ock

short handl| e,
PS6000 EXTERNAL FREQUENCY frequency,
short t hreshol d

)

This function tells the scope whether or not to use an external clock signal fed into the
AUX input. The external clock can be used to synchronise one or more PicoScope 6000
units to an external source.

When the external clock input is enabled, the oscilloscope relies on the clock signal for
all of its timing. The driver checks that the clock is running before starting a capture,
but if the clock signal stops after the initial check, the oscilloscope will not respond to
any further commands until it is powered down and back up again.

Note: if the AUX input is set as an external clock input then it cannot also be used as
an external trigger input.

Applicability |All modes
Arguments handl e, the handle of the required device

f requency, the external clock frequency. The possible values are:
PS6000 FREQUENCY OFF: the scope generates its own clock
PS6000 FREQUENCY 5MHZ: 5 MHz external clock
PS6000 FREQUENCY 10MHZ: 10 MHz external clock
PS6000 FREQUENCY 20MHZ: 20 MHz external clock
PS6000 FREQUENCY 25MHZ: 25 MHz external clock

The external clock signal must be within 5% of the selected

frequency, otherwise this function will report an error.

t hr eshol d, the logic threshold voltage:
-32,512 | -1 volt
0| O volts
32,512 | +1 volt

Returns PI CO_ XX
Pl CO_USER_CALLBACK
Pl CO_| N\VALI D_HANDLE
PI CO_| NVALI D_PARAMETER
Pl CO DRI VER _FUNCTI ON
Pl CO_EXTERNAL FREQUENCY_ | NVALI D
Pl CO_FW FAI L
Pl CO_NOT_RESPONDI NG
Pl CO_CLOCK_CHANGE _ERROR

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

66 Programming with the PicoScope 6000 Series

3.9.41 ps6000SetNoOfCaptures
Pl CO STATUS ps6000Set NoOF Capt ur es

short handl e,
unsi gned | ong nCaptures

)

This function sets the number of captures to be collected in one run of rapid block
mode. If you do not call this function before a run, the driver will capture only one
waveform.

Applicability |Rapid block mode
Arguments handl e, the handle of the device

nCapt ur es, the number of waveforms to capture in one run
Returns Pl CO_K

Pl CO_| NVALI D_HANDLE

Pl CO | NVALI D_PARAMETER

Pl CO_DRI VER_FUNCTI ON

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 67

3.9.42 ps6000SetPulseWidthQualifier
Pl CO_ STATUS ps6000Set Pul seW dt hQual i fi er

(
short handl e,
PS6000_PWQ CONDI TI ONS * conditions,
short nCondi ti ons,
PS6000 THRESHOLD DI RECTION direction,
unsi gned | ong | owner,
unsi gned | ong upper,
PS6000_PULSE_W DTH_TYPE type

)

This function sets up pulse-width qualification, which can be used on its own for pulse-
width triggering or combined with window triggering to produce more complex
triggers. The pulse-width qualifier is set by defining one or more structures that are
then ORed together. Each structure is itself the AND of the states of one or more of
the inputs. This AND-OR logic allows you to create any possible Boolean function of
the scope's inputs.

Applicability All modes

Arguments

handl e, the handle of the required device

* condi tions, an array of PS6000 PWQ CONDI TI ONS structures
specifying the conditions that should be applied to each channel. In
the simplest case, the array consists of a single element. When there
are several elements, the overall trigger condition is the logical OR of
all the elements. If condi ti ons is NULL then the pulse-width
qualifier is not used.

nCondi ti ons, the number of elements in the condi ti ons array.
If nCondi ti ons is zero then the pulse-width qualifier is not used.
Range: 0 to PS6000 MAX PULSE W DTH QUALI FI ER_COUNT.

di rection, the direction of the signal required for the trigger to
fire. See ps6000SetTriggerChannelDirections for the list of possible
values. Each channel of the oscilloscope (except the AUX input) has
two thresholds for each direction—for example, PS6000 RI SI NC and
PS6000 RI SI NG LONER—so that one can be used for the pulse-
width qualifier and the other for the level trigger. The driver will not
let you use the same threshold for both triggers; so, for example, you
cannot use PS6000 RI SI NC as the di rect i on argument for both
ps6000SetTriggerConditions and ps6000SetPulseWidthQualifier at the

same time. There is no such restriction when using window triggers.
| ower, the lower limit of the pulse-width counter

upper, the upper limit of the pulse-width counter. This parameter
is used only when the type is set to PS6000_ PW TYPE | N RANCE or
PS6000 PW TYPE OUT_ OF RANGE.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

68

Programming with the PicoScope 6000 Series

t ype, the pulse-width type, one of these constants:
PS6000 PW TYPE NONE: do not use the pulse width qualifier
PS6000 PW TYPE LESS THAN: pulse width less than | ower
PS6000 PW TYPE GREATER THAN. pulse width greater than
| ower
PS6000 PW TYPE | N RANGE: pulse width between | ower and
upper
PS6000 PW TYPE OUT OF RANGE: pulse width not between
| ower and upper

Returns

Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_CONDI TI ONS

Pl CO_PULSE_W DTH_QUALI FI ER
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 69

3.9.42.1 PS6000_PWQ_CONDITIONS structure

A structure of this type is passed to ps6000SetPulseWidthQualifier in the condi ti ons
argument to specify the trigger conditions. It is defined as follows:

typedef struct tPwgConditions

PS6000_TRI GGER_STATE channel A;
PS6000_TRI GGER_STATE channel B;
PS6000_TRI GGER_STATE channel C,
PS6000_TRI GGER_STATE channel D
PS6000_TRI GGER_STATE ext er nal ;
PS6000_TRI GGER _STATE aux;

} PS6000_PWQ CONDI TI ONS

Each structure is the logical AND of the states of the scope's inputs. The
ps6000SetPulseWidthQualifier function can OR together a number of these structures
to produce the final pulse width qualifier, which can therefore be any possible Boolean
function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements

channel A, channel B, channel C, channel D, aux: the type of
condition that should be applied to each channel. Use these
constants: -

PS6000 CONDI TI ON_DONT CARE

PS6000 CONDI TI ON TRUE

PS6000_ CONDI TI ON FALSE

The channels that are set to PS6000_CONDI TI ON_TRUE or
PS6000 CONDI TI ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS6000 CONDI TI ON_DONT_CARE are ignored.

ext er nal : not used

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

70

Programming with the PicoScope 6000 Series

3.9.43

ps6000SetSigGenArbitrary
Pl CO STATUS ps6000Set Si gGenArbitrary

(
short handl e,
| ong of f set Vol t age,
unsi gned | ong pkToPk
unsi gned | ong start Del t aPhase,
unsi gned | ong st opDel t aPhase,
unsi gned | ong del t aPhasel ncrenent,
unsi gned | ong dwel | Count,
short * arbitraryWavef orm
| ong ar bi t raryWavef ornti ze,
PS6000_ SWEEP_TYPE sweepType,
PS6000_ EXTRA OPERATI ONS operati on,
PS6000_| NDEX MODE i ndexMode,
unsi gned | ong shot s,
unsi gned | ong sweeps,
PS6000_SI GGEN_TRI G_TYPE trigger Type,
PS6000_SI GGEN_TRI G_ SOURCE tri gger Source,
short ext I nThreshol d
)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator uses direct digital synthesis (DDS). It maintains a
32-bit phase counter that indicates the present location in the waveform. The top 14
bits of the counter are used as an index into a buffer containing the arbitrary
waveform.

The generator steps through the waveform by adding a "delta phase" between 1 and
232-1 to the phase counter every 5 ns. If the delta phase is constant, then the
generator produces a waveform at a constant frequency. It is also possible to sweep
the frequency by progressively modifying the delta phase. This is done by setting up
a "delta phase increment” which is added to the delta phase at specified intervals.

Applicability |PicoScope 6402/3/4 and 6402B/3B/4B only
Arguments handl e, the handle of the required device

of f set Vol t age, the voltage offset, in microvolts, to be applied to
the waveform

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform
signal

st art Del t aPhase, the initial value added to the phase counter as
the generator begins to step through the waveform buffer

st opDel t aPhase, the final value added to the phase counter
before the generator restarts or reverses the sweep

del t aPhasel ncrenent, the amount added to the delta phase
value every time the dwel | Count period expires. This determines
the amount by which the generator sweeps the output frequency in
each dwell period.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 71

Arguments dwel | Count, the time, in 5 ns steps, between successive additions
of del t aPhasel ncr ement to the delta phase counter. This
determines the rate at which the generator sweeps the output

frequency.
Minimum value: PS6000 M N DWELL COUNT

* arbitraryWavef orm a buffer that holds the waveform pattern
as a set of samples equally spaced in time.

ar bi traryWavef or nSi ze, the size of the arbitrary waveform
buffer, in samples, from PS6000 M N SI G GEN BUFFER SI ZE to
PS6000_MAX SI G GEN BUFFER_SI ZE.

sweepType, determines whether the st art Del t aPhase is swept
up to the st opDel t aPhase, or down to it, or repeatedly swept up
and down. Use one of these values: -

PS6000 UP

PS6000 DOMWN

PS6000 UPDOVWN

PS6000 DOANNUP

operati on, see ps6000SigGenBuiltin

i ndexMode, specifies how the signal will be formed from the

arbitrary waveform data. Single, dual and quad index modes are
possible. Use one of these constants:

PS6000_ SI NGLE

PS6000 DUAL

PS6000 QUAD

shots, see ps6000SigGenBuiltln

sweeps, see ps6000SigGenBuiltin

trigger Type, see ps6000SigGenBuiltln
tri gger Source, see ps6000SigGenBuiltin
ext I nThreshol d, see ps6000SigGenBuiltin

Returns Pl CO_ XX
Pl CO_| NVALI D_HANDLE
Pl CO_SI G_GEN_PARAM
Pl CO_SHOTS_SWVEEPS WARNI NG
Pl CO_NOT_RESPONDI NG
Pl CO_WARNI NG_AUX_QUTPUT_CONFLI CT
Pl CO WARNI NG_EXT_THRESHOLD CONFLI CT
Pl CO_NO_SI GNAL_GENERATCOR
Pl CO_SI GGEN_OFFSET_VOLTAGE
Pl CO_SI GGEN_PK_TO PK
Pl CO_SI GGEN_QUTPUT_OVER_VOLTAGE
Pl CO_DRI VER_FUNCTI ON
Pl CO_SI GGEN_WAVEFORM _SETUP_FAI LED
Pl CO_ AWG NOT_SUPPORTED (e.g. if device is a 6402A/3A/4A)

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

72

Programming with the PicoScope 6000 Series

3.9.43.1

AWG index modes

The arbitrary waveform generator supports single, dual and quad index modes to
help you make the best use of the waveform buffer.

Single mode. The generator outputs the raw
contents of the buffer repeatedly. This mode
is the only one that can generate
asymmetrical waveforms. You can also use
this mode for symmetrical waveforms, but the
dual and quad modes make more efficient use
of the buffer memory.

Dual mode. The generator outputs the
contents of the buffer from beginning to end,
and then does a second pass in the reverse
direction through the buffer. This allows you
to specify only the first half of a waveform
with twofold symmetry, such as a Gaussian
function, and let the generator fill in the other
half.

Quad mode. The generator outputs the
contents of the buffer, then on its second pass
through the buffer outputs the same data in
reverse order. On the third and fourth passes
it does the same but with a negative version
of the data. This allows you to specify only
the first quarter of a waveform with fourfold
symmetry, such as a sine wave, and let the
generator fill in the other three quarters.

<— Buffer —»

<— Buffer —>

<— Buffer —>

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

73

3.9.44 ps6000SetSigGenBuiltn

Pl CO_STATUS ps6000Set Si gGenBui I tIn

(

short

| ong

unsi gned | ong

short

fl oat

fl oat

fl oat

fl oat

PS6000_SWEEP_TYPE
PS6000_EXTRA OPERATI ONS
unsi gned | ong

unsi gned | ong

PS6000_SI GGEN_TRI G_TYPE
PS6000_SI GGEN_TRI G_SOURCE
short

)

handl| e,

of f set Vol t age,
pkToPk
waveType

st art Frequency,
st opFr equency,
i ncrenment,
dwel | Ti e,
sweepType,
operati on,
shot s,

sweeps,
trigger Type,
trigger Sour ce,
ext I nThreshol d

This function sets up the signal generator to produce a signal from a list of built-in

waveforms.
either up, down or up and down.

If different start and stop frequencies are specified, the device will sweep

Applicability |All modes
Arguments
handl e, the handle of the required device

of f set Vol t age,
pkToPk,
waveType

PS6000_SI NE
PS6000_SQUARE
PS6000_TRI ANGLE
PS6000_RAMP_UP
PS6000_RAVP_DOWN

the voltage offset, in microvolts, to be applied to the waveform
the peak-to-peak voltage, in microvolts, of the waveform signal
the type of waveform to be generated.

sine wave
square wave
triangle wave
rising sawtooth
falling sawtooth

PS6000_SI NC sin (x)/x

PS6000_GAUSSI AN Gaussian

PS6000 HALF_SI NE half (full-wave rectified) sine
PS6000_DC VOLTAGE DC voltage

PS6000_WHI TE_NO SE white noise

start Frequency,

the frequency that the signal generator will initially produce. For

allowable values see PS6000 SI NE MAX FREQUENCY and related values.

st opFr equency,
the initial frequency

i ncrenent,

dwel | Ti ne,

the frequency at which the sweep reverses direction or returns to

the amount of frequency increase or decrease in sweep mode

the time for which the sweep stays at each frequency, in seconds

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

74

Programming with the PicoScope 6000 Series

Arguments

sweepType, whether the frequency will sweep from st art Fr equency to
st opFrequency, or in the opposite direction, or repeatedly reverse direction.
Use one of these constants:
PS6000_ UP
PS6000 DOMN
PS6000_UPDOMN
PS6000 DOWNUP

oper ati on, selects periodic signal, white noise or PRBS:
PS6000_ES OFF (0) produces the waveform specified by waveType.
PS6000_WHI TENO SE (1) produces white noise and ignores all settings
except of f set Vol t age and pkTopk.
PS6000_PRBS (2) produces a pseudo-random binary sequence
(PRBS) and ignores all settings except
of f set Vol t age and pkTopk.

shot's, the number of cycles of the waveform to be produced after a trigger event. If
non-zero (from 1 t o MAX SWEEPS SHOTS), then sweeps must be zero.

sweeps, the number of times to sweep the frequency after a trigger event,
according to sweepType. If non-zero (from 1 to MAX SWEEPS SHOTS), then
shot s must be zero.

trigger Type, the type of trigger that will be applied to the signal generator:

PS6000_SI GGEN_RI SI NG trigger on rising edge
PS6000_SI GGEN_FALLI NG trigger on falling edge
PS6000_SI GGEN_GATE_HI GH run while trigger is high
PS6000_SI GGEN_GATE_LOW run while trigger is low
trigger Sour ce, the source that will trigger the signal generator:
PS6000_SI GGEN_NONE run without waiting for trigger
PS6000_SI GGEN_SCOPE_TRI G use scope trigger
PS6000_SI GGEN_AUX I N use AUX input
PS6000_SI GGEN_SOFT_TRI G wait for software trigger provided by

ps6000SigGenSoftwareControl
PS6000_SI GGEN_TRI GGER_RAW reserved

If a trigger source other than P6000 SI GGEN NONE is specified, then either
shot s or sweeps, but not both, must be non-zero.

ext | nThreshol d, not used.

Returns PI CO_ K

Pl CO_| NVALI D_HANDLE

Pl CO_SI G_GEN_PARAM

Pl CO_SHOTS_SWEEPS_WARNI NG

Pl CO_NOT_RESPONDI NG

Pl CO_WARNI NG_AUX_OUTPUT _CONFLI CT
Pl CO_WARNI NG_EXT_THRESHOLD_CONFLI CT
Pl CO_NO_SI GNAL_GENERATCR

Pl CO_SI GGEN_OFFSET_VOLTAGE

Pl CO_SI GGEN_PK_TO PK

Pl CO_SI GGEN_OUTPUT_OVER VOLTAGE

Pl CO_DRI VER_FUNCTI ON

Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED
Pl CO_NOT_RESPONDI NG

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

75

3.9.45 ps6000SetSimpleTrigger
Pl CO_ STATUS ps6000Set Si npl eTri gger

(

short handl e,

short enabl e,

PS6000 CHANNEL sour ce,

short t hreshol d,

THRESHOLD DI RECTI ON di recti on,

unsi gned | ong del ay,

short aut oTri gger _ns
)

This function simplifies arming the trigger. It supports only the LEVEL trigger types
and does not allow more than one channel to have a trigger applied to it. Any
previous pulse width qualifier is cancelled.

Applicability |All modes

Arguments

Returns

handl e: the handle of the required device.

enabl ed: zero to disable the trigger, any non-zero value to set the
trigger.

sour ce: the channel on which to trigger.
t hr eshol d: the ADC count at which the trigger will fire.

di recti on: the direction in which the signal must move to cause a
trigger. The following directions are supported: ABOVE, BELOWN
RI SI NG, FALLI NGand RI SI NG_COR_FALLI NG.

del ay: the time between the trigger occurring and the first sample
being taken.

aut oTri gger _ns: the number of milliseconds the device will wait if
no trigger occurs.

Pl CO_OK

Pl CO_| NVALI D_HANDLE
Pl CO_USER CALLBACK

Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

76

Programming with the PicoScope 6000 Series

3.9.46 ps6000SetTriggerChannelConditions
Pl CO_STATUS ps6000Set Tri gger Channel Condi ti ons

short

handl e,

PS6000_TRI GGER_CONDI TI ONS * condi ti ons,

short

)

nCondi ti ons

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more PS6000 TRI GGER CONDI TI ONS structures that are then ORed together.
Each structure is itself the AND of the states of one or more of the inputs. This AND-

OR logic allows you to create any possible Boolean function of the scope's inputs.

If complex triggering is not required, use ps6000Set Si npl eTri gger .

Applicability |All modes

Arguments

Returns

handl e, the handle of the required device.

condi ti ons, an array of PS6000 TRI GGER CONDI TlI ONS
structures specifying the conditions that should be applied to each
channel. In the simplest case, the array consists of a single element.
When there is more than one element, the overall trigger condition is
the logical OR of all the elements.

nCondi ti ons, the number of elements in the condi ti ons array.
If nCondi ti ons is zero then triggering is switched off.

Pl CO K

Pl CO | NVALI D_HANDLE

Pl CO_USER CALLBACK

Pl CO_CONDI TI ONS

Pl CO_ MEMORY_FAI L

Pl CO DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 77

3.9.46.1 PS6000_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps6000SetTriggerChannelConditions in the
condi ti ons argument to specify the trigger conditions, and is defined as follows: -

typedef struct tTriggerConditions

PS6000_TRI GGER_STATE channel A;

PS6000_TRI GGER_STATE channel B;

PS6000_TRI GGER_STATE channel C,

PS6000_TRI GGER_STATE channel D

PS6000_TRI GGER_STATE ext er nal ;

PS6000_TRI GGER _STATE aux;

PS6000_TRI GGER_STATE pul seW dt hQual i fi er;
} PS6000_TRI GGER_CONDI TI ONS

Each structure is the logical AND of the states of the scope's inputs. The
ps6000SetTriggerChannelConditions function can OR together a number of these

structures to produce the final trigger condition, which can be any possible Boolean
function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements

channel A, channel B, channel C, channel D, aux,
pul seW dt hQualifier: the type of condition that should be
applied to each channel. Use these constants:

PS6000 CONDI TI ON_DONT CARE

PS6000 CONDI TI ON TRUE

PS6000 CONDI TI ON_FALSE

The channels that are set to PS6000_CONDI TI ON_TRUE or
PS6000 CONDI TI ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS6000 CONDI TI ON_DONT_CARE are ignored.

ext ernal : not used

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

78

Programming with the PicoScope 6000 Series

3.9.47 ps6000SetTriggerChannelDirections

Pl CO_STATUS ps6000Set Tri gger Channel Di recti ons

(

short

handl e,

PS6000_ THRESHOLD DI RECTI ON channel A,
PS6000_THRESHOLD DI RECTI ON channel B,
PS6000_ THRESHOLD DI RECTI ON channel C,
PS6000_THRESHOLD DI RECTI ON channel D,
PS6000_THRESHOLD DI RECTI ON ext,
PS6000_THRESHOLD DI RECTI ON aux

)

This function sets the direction of the trigger for each channel.

Applicability All modes

the handle of the required device

channel C, channel D, aux, the

direction in which the signal must pass through the threshold to
activate the trigger. See the table below for allowable values. If using
a level trigger in conjunction with a pulse-width trigger, see the
description of the di r ecti on argument to

ps6000SetPulseWidthQualifier for more information.

Arguments handl e,
channel A, channel B,
ext: not used
Returns Pl CO_OK

Pl CO_I| NVALI D_HANDLE
Pl CO_USER_CALLBACK
PI CO_| NVALI D_PARAVETER

PS6000 THRESHOLD DI RECTI ON constants

PS6000_ABOVE
PS6000_ABOVE_LOVER
PS6000_BELOW
PS6000_BELOW LOVER
PS6000_RI SI NG

PS6000_RI SI NG LOVWER
PS6000_FALLI NG
PS6000_FALLI NG LONER

PS6000_RI SI NG OR_FALLI NG
PS6000_| NSI DE
PS6000_OUTSI DE
PS6000_ENTER

PS6000_EXI T
PS6000_ENTER OR EXI T

PS6000_PCSI TI VE_RUNT
PS6000_NEGATI VE_RUNT
PS6000_NONE

for gated triggers:
for gated triggers:

above the upper threshold
above the lower threshold
for gated triggers: below the upper threshold
for gated triggers: below the lower threshold

for threshold triggers: rising edge, using upper
threshold

for threshold triggers:
threshold

for threshold triggers: falling edge, using upper
threshold

for threshold triggers: falling edge, using lower
threshold

for threshold triggers: either edge

for window-qualified triggers: inside window
for window-qualified triggers: outside window
for window triggers: entering the window

for window triggers: leaving the window

for window triggers: either entering or leaving
the window

for window-qualified triggers
for window-qualified triggers
no trigger

rising edge, using lower

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 79

3.9.48 ps6000SetTriggerChannelProperties
Pl CO_STATUS ps6000Set Tri gger Channel Properties

(

short

handl e,

PS6000_TRI GGER_CHANNEL PROPERTI ES * channel Properti es

short
short
| ong

)

nChannel Properties
auxQut put Enabl e,
aut oTriggerM |l iseconds

This function is used to enable or disable triggering and set its parameters.

Applicability |All modes

Arguments

Returns

handl e, the handle of the required device.

channel Properties, a pointer to an array of
TRIGGER_CHANNEL_PROPERTIES structures describing the requested
properties. The array can contain a single element describing the
properties of one channel, or a number of elements describing
several channels. If nul | is passed, triggering is switched off.

nChannel Properties, the size of the channel Properties
array. If zero, triggering is switched off.

auxCQut put Enabl e: not used

aut oTriggerM || iseconds, the time in milliseconds for which
the scope device will wait before collecting data if no trigger event
occurs. If this is set to zero, the scope device will wait indefinitely for
a trigger.

Pl CO &K

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_TRI GGER_ERROR

Pl CO_MEMORY_FAI L

Pl CO_| NVALI D_TRI GGER_PROPERTY

Pl CO_DRI VER_FUNCTI ON

Pl CO_| NVALI D_PARAMETER

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

80

Programming with the PicoScope 6000 Series

3.9.48.1 TRIGGER_CHANNEL_PROPERTIES structure
A structure of this type is passed to ps6000SetTriggerChannelProperties in the
channel Properti es argument to specify the trigger mechanism, and is defined as
follows: -

typedef struct tTriggerChannel Properties
short t hr eshol dUpper;
unsi gned short hyst er esi sUpper;
short t hr eshol dLower ;
unsi gned short hyst er esi sLower ;
PS6000 CHANNEL channel ;
PS6000_ THRESHOLD MODE t hr eshol dMbde;

} PS6000 TRI GGER CHANNEL PROPERTI ES

The structure is byte-aligned. In C++, for example, you should specify this using the

#pragma pack() instruction.

Elements t hr eshol dUpper, the upper threshold at which the trigger must
fire. This is scaled in 16-bit ADC counts at the currently selected
range for that channel.

t hr eshol dUpper Hyst er esi s, the hysteresis by which the trigger
must exceed the upper threshold before it will fire. It is scaled in 16-
bit counts.
t hr eshol dLower, the lower threshold at which the trigger must
fire. This is scaled in 16-bit ADC counts at the currently selected
range for that channel.
t hr eshol dLower Hyst er esi s, the hysteresis by which the trigger
must exceed the lower threshold before it will fire. It is scaled in 16-
bit counts.
channel , the channel to which the properties apply. This can be
one of the four input channels listed under ps6000SetChannel, or
PS6000_TRIGGER_AUX for the AUX input.
t hr eshol dMode, either a level or window trigger. Use one of these
constants: -

PS6000_LEVEL

PS6000_W NDOW

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 81

3.9.49 ps6000SetTriggerDelay
Pl CO STATUS ps6000Set Tri gger Del ay

short handl e,
unsi gned | ong del ay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability |All modes
Arguments handl e, the handle of the required device

del ay, the time between the trigger occurring and the first sample.
For example, if del ay=100 then the scope would wait 100 sample
periods before sampling. At a timebase of 5 GS/s, or 200 ps per
sample (t i nebase = 0), the total delay would then be
800 x 200 ps = 160 ns.
Range: 0 to MAX DELAY COUNT

Returns PI CO_ K
Pl CO_| NVALI D_HANDLE
Pl CO USER CALLBACK
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

82

Programming with the PicoScope 6000 Series

3.9.50 ps6000SetWaveformLimiter
Pl CO STATUS ps6000Set Wavef ornli m ter
short handl e,
unsi gned | ong nWavef or nsPer Second
)
This function sets a limit to the number of waveforms per second transferred over the
USB connection in rapid block mode. The driver will wait between captures, if
necessary, to obtain the requested waveform rate.
Applicability |Rapid block mode
Arguments handl e, the handle of the required device
nWavef or nsPer Second, the maximum number of waveforms per
second
Returns Pl CO_K
PI CO | NVALI D HANDLE
Pl CO USER CALLBACK
Pl CO DRI VER_FUNCTI ON
Pl CO | NVALI D_PARAMETER
ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 83

3.9.51 ps6000SigGenSoftwareControl
Pl CO_STATUS ps6000Si gGenSof t war eCont r ol

short handl| e,
short state

)

This function causes a trigger event, or starts and stops gating. It is used when the
signal generator is set to SI GGEN_SOFT_TRI G

Applicability |Use with ps6000SetSigGenBuiltin or ps6000SetSigGenArbitrary.
Arguments handl e, the handle of the required device

st at e, sets the trigger gate high or low when the trigger type is
set to either S| GGEN_GATE HI GH or SI GGEN_GATE LOW Ignored
for other trigger types.
Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_NO_SI GNAL_GENERATOR
Pl CO_SI GGEN_TRI GGER_SOURCE
Pl CO DRI VER_FUNCTI ON
Pl CO_NOT_RESPONDI NG

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

84

Programming with the PicoScope 6000 Series

3.9.52 ps6000Stop

Pl CO_STATUS ps6000St op

short handl e

)

This function stops the scope device from sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

Always call this function after the end of a capture to ensure that the scope is ready
for the next capture.

Applicability |All modes

Arguments handl e, the handle of the required device.

Returns Pl CO_OK

Pl CO_| NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 85

3.9.53 ps6000StreamingReady
typedef void (CALLBACK *ps6000St r ean ngReady)

short

handl e,

unsi gned | ong nof Sanpl es,
unsi gned | ong start | ndex,

short over f | ow,
unsi gned | ong triggerAt,
short triggered,
short aut oSt op
voi d * pPar anet er

)

This callback function is part of your application. You register it with the driver using
ps6000GetStreaminglLatestValues, and the driver calls it back when streaming-mode
data is ready. You can then download the data using the ps6000GetValuesAsync

function.

Applicability
Arguments

Returns

Streaming mode only

handl e, the handle of the device returning the samples.
nof Sanpl es, the number of samples to collect.

start |l ndex, an index to the first valid sample in the buffer. This
is the buffer that was previously passed to ps6000SetDataBuffer.

over fl ow, returns a set of flags that indicate whether an
overvoltage has occurred on any of the channels. Itis a bit pattern
with bit O denoting Channel A.

triggerAt, an index to the buffer indicating the location of the
trigger point. This parameter is valid only when t ri gger ed is non-
zero.

triggered, a flag indicating whether a trigger occurred. If non-
zero, a trigger occurred at the location indicated by t ri gger At .

aut oSt op, the flag that was set in the call to
ps6000RuNnStreaming.

pPar anet er, a void pointer passed from
ps6000GetStreaminglLatestValues. The callback function can write to
this location to send any data, such as a status flag, back to the
application.

nothing

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

86 Programming with the PicoScope 6000 Series

3.10 Programming examples
Your PicoScope installation includes programming examples in the following languages
and development environments:

®C

@ Visual Basic
@ Excel

® LabView

3.10.1 C

The C example program is a comprehensive console mode program that demonstrates
all of the facilities of the driver.

To compile the program, create a new project for an Application containing the
following files: -

® ps6000con. c

and:
® ps6000bc.lib (Borland 32-bit applications) or
® ps6000.1ib (Microsoft Visual C 32-bit applications)

The following files must be in the compilation directory:

® ps6000Api . h
® picoStatus. h

and the following file must be in the same directory as the executable:

® ps6000. dl |

3.10.2 Visual Basic

The Exanpl es/ ps6000/ subdirectory of your PicoScope installation contains the
following files:

® ps6000. vbp - project file
® ps6000. bas - procedure prototypes
® ps6000. f rm - form and program

Note: The functions which return a TRUE/FALSE value, return O for FALSE and 1 for
TRUE, whereas Visual Basic expects 65 535 for TRUE. Check for >0 rather than

=TRUE.
3.10.3 Excel
1. Load the spreadsheet ps6000. x| s
2. Select Tools | Macro
3. Select GetData
4. Select Run

Note: The Excel macro language is similar to Visual Basic. The functions which return
a TRUE/FALSE value, return O for FALSE and 1 for TRUE, whereas Visual Basic
expects 65 535 for TRUE. Check for >0 rather than =TRUE.

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 87

3.10.4 LabView

The SDK contains a library of VIs that can be used to control the PicoScope 6000 and
some simple examples of using these Vls in streaming mode, block mode and rapid
block mode.

The LabVIEW library (Pi coScope6000. | | b) can be placed in the user. | i b sub-
directory to make the Vls available on the ‘User Libraries’ palette. You must also copy
ps6000. dl I and ps6000w ap. dl | to the folder containing your LabView project.

The library contains the following Vls:

® Pi coErrorHandl er.vi - takes an error cluster and, if an error has occurred,
displays a message box indicating the source of the error and the status code
returned by the driver

® Pi coScope6000AdvancedTri gger Settings. vi - an interface for the advanced
trigger features of the oscilloscope

This VI is not required for setting up simple triggers, which are configured using
Pi coScope6000Set ti ngs. vi .

For further information on these trigger settings, see descriptions of the trigger
functions:

ps6000Set Tri gger Channel Condi ti ons
ps6000Set Tri gger Channel Di recti ons
ps6000Set Tri gger Channel Properties
ps6000Set Pul seW dt hQual i fi er
ps6000Set Tri gger Del ay

® Pi coScope6000AWG. vi - controls the arbitrary waveform generator

Standard waveforms or an arbitrary waveform can be selected under ‘Wave Type’.
There are three settings clusters: general settings that apply to both arbitrary and
standard waveforms, settings that apply only to standard waveforms and settings
that apply only to arbitrary waveforms. It is not necessary to connect all of these
clusters if only using arbitrary waveforms or only using standard waveforms.

When selecting an arbitrary waveform, it is necessary to specify a text file
containing the waveform. This text file should have a single value on each line in
the range -1 to 1. For further information on the settings, see descriptions of
ps6000Set Si gGenBui | t1 n and ps6000Set Si gGenArbitrary.

® Pi coScope6000C ose. vi - closes the oscilloscope
Should be called before exiting an application.

® Pi coScope6000Cet Bl ock. vi - collects a block of data from the oscilloscope
This can be called in a loop in order to continually collect blocks of data. The
oscilloscope should first be set up by using Pi coScope6000Set ti ngs. vi . The VI

outputs data arrays in two clusters (max and min). If not using aggregation, ‘Min
Buffers’ is not used.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

88 Programming with the PicoScope 6000 Series

® Pi coScope6000CGet Rapi dBI ock. vi - collects a set of data blocks or captures
from the oscilloscope in rapid block mode

This VI is similar to Pi coScope6000Cet Bl ock. vi . It outputs two-dimensional
arrays for each channel that contain data from all the requested number of
captures.

® Pi coScope6000CGet St ream ngVal ues. vi - used in streaming mode to get the
latest values from the driver

This VI should be called in a loop after the oscilloscope has been set up using
Pi coScope6000Set ti ngs. vi and streaming has been started by calling

Pi coScope6000St art St ream ng. vi . The VI outputs the number of samples
available and the start index of these samples in the array output by

Pi coScope6000St art St reani ng. vi .

® Pi coScope60000pen. vi - opens a PicoScope 6000 and returns a handle to the
device

® Pi coScope6000Settings. vi - sets up the oscilloscope

The inputs are clusters for setting up channels and simple triggers. Advanced
triggers can be set up using Pi coScope6000AdvancedTri gger Setti ngs. vi .

® Pi coScope6000St art St ream ng. vi - starts the oscilloscope streaming

It outputs arrays that will contain samples once
Pi coScope6000Cet St r eani ngVal ues. vi has returned.

® PicoStatus.vi -checks the status value returned by calls to the driver

If the driver returns an error, the status member of the error cluster is set to ‘true’
and the error code and source are set.

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 89

3.11 Driver status codes

Every function in the ps6000 driver returns a driver status code from the following
list of PI CO_STATUS values. These definitions can also be found in the file

pi coSt at us. h, which is included in the PicoScope 6000 Series SDK. Not all codes
apply to the PicoScope 6000 Series SDK.

Code (hex) / Symbol and meaning

00
01

02

03

04
05
06

07

08

09

0A

0B

0oC

(0]}

OE

OF

10

11

12

13
14

15
16
18
19

1A
1B

1C

1D

1E

Pl CO OK - The PicoScope 6000 is functioning correctly.

Pl CO MAX_UNI TS _OPENED - An attempt has been made to open more than
PS6000_MAX_UNI TS.

Pl CO_ MEMORY_FAI L - Not enough memory could be allocated on the host
machine.
Pl CO_NOT_FOUND - No PicoScope 6000 could be found.

PI CO FW FAI L - Unable to download firmware.
Pl CO_OPEN_OPERATI ON_| N_PROGRESS
Pl CO_OPERATI ON_FAI LED

Pl CO_NOT_RESPONDI NG - The PicoScope 6000 is not responding to commands
from the PC.

Pl CO_CONFI G _FAI L - The configuration information in the PicoScope 6000 has
become corrupt or is missing.

Pl CO KERNEL_DRI VER_TOO OLD - The pi copp. sys file is too old to be used
with the device driver.

Pl CO_EEPROM CORRUPT - The EEPROM has become corrupt, so the device will
use a default setting.

Pl CO_OS_NOT_SUPPORTED - The operating system on the PC is not supported
by this driver.

Pl CO | NVALI D HANDLE - There is no device with the handle value passed.

Pl CO_| NVALI D_PARAMETER - A parameter value is not valid.

Pl CO_I NVALI D TI MEBASE - The timebase is not supported or is invalid.

Pl CO_| NVALI D VOLTAGE _RANGE - The voltage range is not supported or is
invalid.

PI CO I NVALI D CHANNEL - The channel number is not valid on this device or
no channels have been set.

Pl CO I NVALI D TRI GGER_CHANNEL - The channel set for a trigger is not
available on this device.

PI CO_| NVALI D_CONDI TI ON_CHANNEL - The channel set for a condition is not
available on this device.

Pl CO_NO_SI GNAL_GENERATOR - The device does not have a signal generator.
Pl CO_STREAM NG_FAI LED - Streaming has failed to start or has stopped
without user request.

Pl CO BLOCK_MODE_FAI LED - Block failed to start - a parameter may have been
set wrongly.

Pl CO_NULL_PARAMETER - A parameter that was required is NULL.

PI CO_ DATA NOT_AVAI LABLE - No data is available from a run block call.

Pl CO_STRI NG BUFFER_TOO SMALL - The buffer passed for the information was
too small.

Pl CO_ETS _NOT_SUPPORTED - ETS is not supported on this device.

Pl CO AUTO TRI GGER Tl ME_TOO SHORT - The auto trigger time is less than the
time it will take to collect the pre-trigger data.

PI CO BUFFER _STALL - The collection of data has stalled as unread data would
be overwritten.

Pl CO_ TOO MANY_SAMPLES - Number of samples requested is more than
available in the current memory segment.

Pl CO_ TOO MANY_SEGMVENTS - Not possible to create number of segments
requested.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

90

Programming with the PicoScope 6000 Series

1F
20
21

22
23

24

25
26
27
28
29
2A
2B
2D
2E
34
35
36
37
38
39
3A
3B
3C

3F
40

41
42

43

45

46

47

49

4A

Pl CO PULSE W DTH _QUALI FI ER - A null pointer has been passed in the trigger
function or one of the parameters is out of range.

Pl CO DELAY - One or more of the hold-off parameters are out of range.

Pl CO SOURCE_DETAI LS - One or more of the source details are incorrect.

Pl CO_CONDI TI ONS - One or more of the conditions are incorrect.

Pl CO USER CALLBACK - The driver's thread is currently in the
ps6000BlockReady callback function and therefore the action cannot be carried
out.

Pl CO DEVI CE_SAMPLI NG - An attempt is being made to get stored data while
streaming. Either stop streaming by calling ps6000Stop, or use

ps6000GetStreaminglLatestValues.
Pl CO_ NO SAMPLES AVAI LABLE - because a run has not been completed.

Pl CO SEGVENT _QUT_OF RANGE - The memory index is out of range.

Pl CO BUSY - Data cannot be returned yet.

Pl CO_STARTI NDEX | NVALI D - The start time to get stored data is out of range.
Pl CO | NVALI D I NFO - The information number requested is not a valid
number.

Pl CO_| NFO UNAVAI LABLE - The handle is invalid so no information is available
about the device. Only PI CO DRI VER VERSI ON is available.

Pl CO | NVALI D SAMPLE | NTERVAL - The sample interval selected for streaming
is out of range.

Pl CO_ MEMORY - Driver cannot allocate memory.

Pl CO_SI G_GEN_PARAM - Incorrect parameter passed to signal generator.

Pl CO WARNI NG_AUX_QUTPUT_CONFLI CT - AUX cannot be used as input and
output at the same time.

Pl CO_SI GGEN_QUTPUT_OVER VOLTAGE - The combined peak to peak voltage and
the analog offset voltage exceed the allowable voltage the signal generator can
produce.

Pl CO DELAY_NULL - NULL pointer passed as delay parameter.

Pl CO | NVALI D BUFFER - The buffers for overview data have not been set
while streaming.

Pl CO _SI GGEN_COFFSET_VOLTAGE - The analog offset voltage is out of range.

Pl CO _SI GGEN_PK TO PK - The analog peak to peak voltage is out of range.

Pl CO CANCELLED - A block collection has been cancelled.

Pl CO SEGQVENT_NOT_USED - The segment index is not currently being used.

Pl CO I NVALI D CALL - The wrong GetValues function has been called for the
collection mode in use.

Pl CO NOT_USED - The function is not available.

Pl CO | NVALI D_SAMPLERATI O - The aggregation ratio requested is out of
range.

Pl CO | NVALI D_STATE - Device is in an invalid state.

Pl CO_NOT_ENOUGH _SEGVENTS - The number of segments allocated is fewer
than the number of captures requested.

Pl CO DRI VER_FUNCTI ON - You called a driver function while another driver
function was still being processed.

Pl CO | NVALI D _COUPLI NG - An invalid coupling type was specified in
ps6000SetChannel.

Pl CO BUFFERS NOT_SET - An attempt was made to get data before a data
buffer was defined.

Pl CO RATI O MODE_NOT_SUPPORTED - The selected downsampling mode (used
for data reduction) is not allowed.

Pl CO | NVALI D TRI GGER_PROPERTY - An invalid parameter was passed to
ps6000SetTriggerChannelProperties.

Pl CO_| NTERFACE _NOT_CONNECTED - The driver was unable to contact the
oscilloscope.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 91

4D

4E
4F

50

51
52

53
54

56

57
58

59

5A

5B

5C

5D

5E

103
104

105
106
107
108
109
10A
10B
10C
10D
10E
10F
110
111

112

Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED - A problem occurred in

ps6000SetSigGenBuiltin or ps6000SetSigGenArbitrary.
Pl CO FPGA FAI L

Pl CO_PONER MANAGER

Pl CO | NVALI D ANALOGUE_OFFSET - An impossible analogue offset value was
specified in ps6000SetChannel.

Pl CO PLL_LOCK FAI LED - Unable to configure the PicoScope 6000.

Pl CO ANALOG BOARD - The oscilloscope's analog board is not detected, or is
not connected to the digital board.

Pl CO CONFI G_FAI L_AWG - Unable to configure the signal generator.

Pl CO I NI TI ALI SE_FPGA - The FPGA cannot be initialized, so unit cannot be
opened.

Pl CO EXTERNAL FREQUENCY_ | NVALI D - The frequency for the external clock is
not within 5% of the stated value.

Pl CO CLOCK _CHANGE ERROR - The FPGA could not lock the clock signal.

Pl CO TRI GGER_AND EXTERNAL_ CLOCK CLASH - You are trying to configure the
AUX input as both a trigger and a reference clock.

Pl CO PWQ AND EXTERNAL CLOCK CLASH - You are trying to configure the AUX
input as both a pulse width qualifier and a reference clock.

Pl CO UNABLE _TO OPEN SCALI NG FI LE - The scaling file set can not be
opened.

Pl CO_ MEMORY_CLOCK FREQUENCY - The frequency of the memory is reporting
incorrectly.

Pl CO | 2C _NOT_RESPONDI NG - The 12C that is being actioned is not responding
to requests.

Pl CO NO CAPTURES_AVAI LABLE - There are no captures available and
therefore no data can be returned.

Pl CO NOT_USED I N THI S CAPTURE_MODE - The capture mode the device is
currently running in does not support the current request.

Pl CO GET_DATA ACTI VE - Reserved

Pl CO | P_NETWORKED - The device is currently connected via the IP Network
socket and thus the call made is not supported.

Pl CO I NVALI D | P_ADDRESS - An IP address that is not correct has been
passed to the driver.

Pl CO | PSOCKET_FAI LED - The IP socket has failed.

Pl CO | PSOCKET_TI MEDOQUT - The IP socket has timed out.

Pl CO SETTI NGS_FAI LED - The settings requested have failed to be set.

Pl CO NETWORK_FAI LED - The network connection has failed.

Pl CO W52 32 DLL_NOT_LOADED - Unable to load the WS2 dll.

Pl CO I NVALI D I P_PORT - The IP port is invalid.

Pl CO_COUPLI NG_NOT_SUPPORTED - The type of coupling requested is not
supported on the opened device.

Pl CO_ BANDW DTH_NOT_SUPPORTED - Bandwidth limit is not supported on the
opened device.

Pl CO | NVALI D BANDW DTH - The value requested for the bandwidth limit is out
of range.

Pl CO AWG NOT_SUPPCORTED - The device does not have an arbitrary waveform
generator.

Pl CO ETS NOT_RUNNI NG - Data has been requested with ETS mode set but run
block has not been called, or stop has been called.

Pl CO_SI G_GEN WH TENO SE_NOT_SUPPORTED - White noise is not supported on
the opened device.

Pl CO _SI G_ GEN WAVETYPE_NOT_SUPPCORTED - The wave type requested is not
supported by the opened device.

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

92 Programming with the PicoScope 6000 Series

3.12 Enumerated types and constants

Here are the enumerated types used in the PicoScope 6000 Series SDK, as defined in
the file ps6000Api . h . We recommend that you refer to these constants by name
unless your programming language allows only numerical values.

#def i ne PS6000_MAX_OVERSAMPLE_8BI T 256

#def i ne PS6000_MAX_VALUE 32512
#def i ne PS6000_M N_VALUE - 32512

#define MAX_PULSE_W DTH_QUALI FI ER_COUNT 16777215L

#define MAX_SI G GEN_BUFFER S| ZE 16384
#define M N_SI G GEN_BUFFER_SI ZE 10

#def i ne M N_DWELL_CQOUNT 10
#def i ne MAX_SWEEPS_SHOTS ((1 << 30) - 1)

#def i ne MAX_WAVEFORMS_PER SECOND 1000000

#def i ne MAX_ANALOGUE_OFFSET_50MV_200M/ 0. 500f
#def i ne M N_ANALOGUE_OFFSET_50My_200M/ - 0. 500f

#def i ne MAX_ANALOGUE_OFFSET_500M/_2V 2. 500f
#def i ne M N_ANALOGUE_OFFSET_500M/_2V - 2. 500f
#def i ne MAX_ANALOGUE_OFFSET_5V_20V 20. f
#def i ne M N_ANALOGUE_OFFSET_5V_20V -20. f

#def i ne PS6000_MAX_ETS_CYCLES 250
#def i ne PS6000_MAX_| NTERLEAVE 50

typedef enum enPS6000Ext er nal Fr equency
{

PS6000_FREQUENCY_ CFF,
PS6000_FREQUENCY _5MHZ,
PS6000_FREQUENCY 10MHZ,
PS6000_FREQUENCY 20MHZ,
PS6000_FREQUENCY 25MHZ,
PS6000_MAX_FREQUENCI ES

} PS6000_EXTERNAL_FREQUENCY:

typedef enum enPS6000Bandwi dt hLimiter
{

PS6000_BW FULL,
PS6000_BW 20MHZ,
PS6000_BW 25M-Z,

} PS6000_BANDW DTH_LI M TER;

typedef enum enPS6000Channel
{

PS6000_CHANNEL _A,
PS6000_CHANNEL _B,
PS6000_CHANNEL _C,
PS6000_CHANNEL _D,
PS6000_EXTERNAL,
PS6000_MAX_CHANNELS = PS6000_EXTERNAL,
PS6000_TRI GGER_AUX,
PS6000_MAX_TRI GGER_SOURCES
} PS6000_ CHANNEL;

typedef enum enPS6000Channel Buf f er | ndex
{

PS6000_CHANNEL_A_MAX,
PS6000_CHANNEL_A M N,
PS6000_CHANNEL_B_NMAX,
PS6000_CHANNEL_B_M N,
PS6000_CHANNEL_C_MAX,
PS6000_CHANNEL_C M N,
PS6000_CHANNEL_D_MAX,
PS6000_CHANNEL_D M N,
PS6000_MAX_CHANNEL_BUFFERS
} PS6000_CHANNEL_BUFFER | NDEX;

typedef enum enPS6000Range

PS6000_10WV,
PS6000_20WV,
PS6000_50WV,
PS6000_100MWV,

ps6000pg.en Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

93

PS6000_200MV,
PS6000_500MV,
PS6000_1V,
PS6000_2V,
PS6000_5V,
PS6000_10V,
PS6000_20V,
PS6000_50V,
PS6000_MAX_RANGES

1 PS6000_RANGE;

typedef enum enPS6000Coupl i ng

PS6000_AC,
PS6000_DC_1M
PS6000_DC_50R

} PS6000_COUPLI NG

typedef enum enPS6000Et shvbde

{

PS6000_ETS_OFF,
PS6000_ETS_FAST,
PS6000_ETS_SLOW
PS6000_ETS_MODES_MAX
PS6000_ETS_MODE;

}

typedef enum enPS6000Ti neUnits

{

PS6000_FS,

PS6000_PS,

PS6000_NS,

PS6000_US,

PS6000_MS,

PS6000_S,

PS6000_MAX_TI ME_UNI TS,
PS6000_TI ME_UNI TS:

}

typedef enum enPS6000SweepType

PS6000_UP,
PS6000_DOVN,
PS6000_UPDOVW,
PS6000_DOWNUP,
PS6000_MAX_SWEEP_TYPES

} PS6000_SWEEP_TYPE;

typedef enum enPS6000WAveType
{

PS6000_SI NE,
PS6000_SQUARE,
PS6000_TRI ANGLE,
PS6000_RAMP_UP,
PS6000_RAVP_DOWK,
PS6000_SI NG,
PS6000_GAUSSI AN,
PS6000_HALF_SI NE,
PS6000_DC_VOLTAGE,
PS6000_WH TE_NO SE,
PS6000_MAX_WAVE_TYPES

} PS6000_WAVE_TYPE;

typedef enum enPS6000Ext r aOper ati ons
{

PS6000_ES_OFF,

PS6000_WH TENO SE,

PS6000_PRBS // Pseudo- Random Bit Stream
} PS6000_EXTRA OPERATI ONS;

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

PS6000_SI NE_MAX_FREQUENCY
PS6000_SQUARE_MAX_FREQUENCY

PS6000_TRI ANGLE_MAX_FREQUENCY

PS6000_SI NC_MAX_FREQUENCY
PS6000_RAMP_MAX_FREQUENCY

PS6000_HALF_SI NE_MAX_FREQUENCY
PS6000_GAUSSI AN_MAX_FREQUENCY

PS6000_M N_FREQUENCY

typedef enum enPS6000Si gGenTri gType
{

PS6000_SI GGEN_RI SI NG,
PS6000_SI GGEN_FALLI NG,

20000000.
20000000.
20000000.
20000000.
20000000.
20000000.
20000000.

0. 03f

—h —h —h —h —h —h —h

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

94

Programming with the PicoScope 6000 Series

PS6000_SI GGEN_GATE_HI GH,
PS6000_S| GGEN_GATE_LOW
} PS6000_SI GGEN_TRI G_TYPE;

typedef enum enPS6000Si gGenTri gSour ce
{

PS6000_SI GGEN_NONE,
PS6000_SI GGEN_SCOPE_TRI G
PS6000_SI GGEN_AUX_I N,
PS6000_SI GGEN_EXT_I N,
PS6000_SI GGEN_SOFT_TRI G
PS6000_SI GGEN_TRI GGER_RAW

} PS6000_SI GGEN_TRI G_SOURCE;

typedef enum enPS6000I ndexMbde
{

PS6000_SI NGLE,
PS6000_DUAL,
PS6000_QUAD,
PS6000_MAX_| NDEX_MODES

} PS6000_1 NDEX_MODE;

typedef enum enPS6000Thr eshol dvbde
{

PS6000_LEVEL,
PS6000_W NDOW
} PS6000_THRESHOLD_ MODE;

typedef enum enPS6000Thr eshol dDi recti on
{

PS6000_ABOVE,
PS6000_BELOW

PS6000_RI SI NG
PS6000_FALLI NG,

PS6000_RI SI NG OR_FALLI NG
PS6000_ABOVE_LOVER,
PS6000_BELOW LOVER,
PS6000_RI SI NG_LOVER,
PS6000_FALLI NG_LOAER,

/1 W ndowi ng using both threshol ds

PS6000_I NSI DE = PS6000_ABOVE,

PS6000_OUTSI DE = PS6000_BELOW

PS6000_ENTER = PS6000_RI SI NG,

PS6000_EXI T = PS6000_FALLI NG

PS6000_ENTER _OR_EXI T = PS6000_RI SI NG OR _FALLI NG
PS6000_POSI TI VE_RUNT = 9,
PS6000_NEGATI VE_RUNT,

/1 no trigger set
PS6000_NONE = PS6000_RI SI NG
} PS6000_THRESHOLD DI RECTI ON;

typedef enum enPS6000Tri gger St ate

PS6000_CONDI TI ON_DONT_CARE,
PS6000_CONDI TI ON_TRUE,
PS6000_CONDI TI ON_FALSE,

PS6000_CONDI TI ON_MAX

} PS6000_TRI GGER_STATE;

typedef enum enPS6000Rat i ovbde
{

PS6000_RATI O MODE_NONE,
PS6000_RATI O_MODE_AGGREGATE = 1,
PS6000_RATI O_MODE_AVERAGE =
PS6000_RATI O_MODE_DECI MATE =
PS6000_RATI O_MODE_Di STRI BUTI

} PS6000_RATI O NODE;

a,
ON = 8

typedef enum enPS6000Pul seW dt hType

PS6000_PW TYPE_NONE,

PS6000_PW TYPE_LESS THAN,

PS6000_PW TYPE_GREATER THAN,

PS6000_PW TYPE_| N_RANGE,

PS6000_PW TYPE_OUT_OF_RANGE
} PS6000_PULSE_W DTH_TYPE;

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 95

3.13 Numeric data types

Here is a list of the sizes and ranges of the numeric data types used in the PicoScope
6000 Series API.

Type Bits Signed or unsigned?
short 16 signed

enum 32 enumerated

int 32 signed

long 32 signed

unsigned long 32 unsigned

float 32 signed (IEEE 754)
__int64 64 unsigned

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

96

Glossary

Glossary

Callback. A mechanism that the PicoScope 6000 driver uses to communicate
asynchronously with your application. At design time, you add a function (a callback
function) to your application to deal with captured data. At run time, when you
request captured data from the driver, you also pass it a pointer to your function. The
driver then returns control to your application, allowing it to perform other tasks until
the data is ready. When this happens, the driver calls your function in a new thread
to signal that the data is ready. It is then up to your function to communicate this
fact to the rest of your application.

Device Manager. A Windows program that displays the current hardware
configuration of your computer. On Windows XP, Vista, or 7, right-click ‘"My Computer,’
choose 'Properties’, then click the 'Hardware' tab and the 'Device Manager' button.

Driver. A program that controls a piece of hardware. The driver for the PicoScope
6000 Series oscilloscopes is supplied in the form of a 32-bit Windows DLL,
ps6000. dl | . This is used by the PicoScope software, and by user-designed
applications, to control the oscilloscopes.

PC Oscilloscope. A virtual instrument formed by connecting a PicoScope 6000 Series
oscilloscope to a computer running the PicoScope software.

PicoScope 6000 Series. A range of PC Oscilloscopes from Pico Technology. The
common features include 5 GS/s maximum sampling rate and 8-bit resolution. The
scopes are available with a range of buffer sizes up to 1 GS.

PicoScope software. A software product that accompanies all Pico PC Oscilloscopes.
It turns your PC into an oscilloscope, spectrum analyzer, and meter display.

PRBS (pseudo-random binary sequence). A very long, fixed, repeating sequence
of binary digits that appears random when analyzed over a time shorter than the
repeat period. The waveform swings between two values: logic high (binary 1) and
logic low (binary 0).

USB (Universal Serial Bus). A serial port used to connect external devices to PCs.
USB 2.0 ports supports data transfer rates of up to 480 megabits per second.

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

97

Index

A

AC coupling 56

Aggregation 17, 37

Analog offset 27, 56

API function calls 21

Arbitrary waveform generator 70
index modes 72

Averaging 37

B

Bandwidth limiter 56
Block mode 7,8,9
asynchronous call 9
callback 22
polling status 45
running 52
Buffers
overrun 6

C

C programming 86
Callback function
block mode 22
for data 24
streaming mode 85
Channels
enabling 56
settings 56
Clock, external 65
Closing units 23
Company information 3
Constants 92
Contact details 3
Coupling type, setting 56

D

Data acquisition 17

Data buffers
declaring 58
declaring, aggregation mode 60
declaring, rapid block mode 59
setting up 61

DC coupling 56

Decimation 37

Disk space 4

Distribution 37
Downsampling 36
maximum ratio 28
modes 37
Driver 6
status codes 89

E

Enabling channels 56
Enumerated types 92
Enumerating oscilloscopes 25
ETS
overview 15
setting time buffers 63, 64
settingup 62
using 15
Excel macros 86
External clock 65

F

Function calls 21

Functions
ps6000BlockReady 22
ps6000CloseUnit 23
ps6000DataReady 24
ps6000EnumerateUnits 25
ps6000FlashLed 26
ps6000GetAnalogueOffset 27
ps6000GetMaxDownSampleRatio 28
ps6000GetNoOfCaptures 29
ps6000GetStreamingLatestValues 30
ps6000GetTimebase 31
ps6000GetTimebase2 32
ps6000GetTriggerTimeOffset 33
ps6000GetTriggerTimeOffset64 34
ps6000GetUnitinfo 35
ps6000GetValues 36
ps6000GetValuesAsync 38
ps6000GetValuesBulk 39
ps6000GetValuesBulkAsync 40
ps6000GetValuesOverlapped 41
ps6000GetValuesOverlappedBulk 42
ps6000GetValuesTriggerTimeOffsetBulk 43
ps6000GetValuesTriggerTimeOffsetBulk64 44
ps6000IsReady 45

ps6000IsTriggerOrPulseWidthQualifierEnabled
46

ps6000MemorySegments 47
ps6000NoOfStreamingValues 48
ps60000penUnit 49
ps60000penUnitAsync 50

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

98 Index
Functions
ps60000penUnitProgress 51 N
ps6000RunBlock 52
ps6000RunStreaming 54 Numeric data types 95
ps6000SetChannel 56
ps6000SetDataBuffer 58 O
ps6000SetDataBufferBulk 59 One-shot signals 15
ps6000SetDataBuffers 60 Opening a unit 49
ps6000SetDataBuffersBulk 61 checking progress 51
ps6000SetEts 62 without blocking 50
ps6000SetEtsTimeBuffer 63 Operating system 4
ps6000SetEtsTimeBuffers 64 Oversampling 19
ps6000SetExternalClock 65
ps6000SetNoOfCaptures 66 P
ps6000SetPulseWidthQualifier 67
ps6000SetSigGenArbitrary 70 Pico Technical Support 3
ps6000SetSigGenBuiltin -~ 73 PICO_STATUS enum type 89
ps6000SetSimpleTrigger 75 picopp.inf 6
ps6000SetTriggerChannelConditions 76 picopp.sys 6
ps6000SetTriggerChannelDirections 78 PicoScope 6000 Series 1
ps6000SetTriggerChannelProperties 79 PicoScope software 5, 6, 89
ps6000SetTriggerDelay 81 Processor 4
ps6000SetWaveformLimiter 82 Programming
ps6000SigGenSoftwareControl 83 C 86
ps6000Stop 84 Excel 86
ps6000StreamingReady 85 LabView 87
Visual Basic 86
H PS6000_CONDITION_ constants 69, 77
PS6000_LEVEL constant 80
Hysteresis 80 PS6000 LOST DATA constant 6
PS6000_MAX_VALUE constant 6
PS6000_MIN_VALUE constant 6
Information, reading from units 35 PS6000_PWQ_CONDITIONS structure 69
Input range, selecting 56 PS6000_TIME_UNITS constant 33
Installation 5 PS6000_TRIGGER_CHANNEL_PROPERTIES
structure 80
PS6000_TRIGGER_CONDITIONS structure 77
I— PS6000_WINDOW constant 80
LabView 87 Pulse-width qualifier 67
LED conditions 69
flashing 26 requesting status 46
M R

Macros in Excel 86
Memory in scope 8
Memory segments 47
Microsoft Windows 4
Multi-unit operation 20

Rapid block mode 10
setting number of captures 66
Resolution, vertical 19
Retrieving data 36, 38
block mode, deferred 41
rapid block mode 39

rapid block mode with callback 40

rapid block mode, deferred 42

ps6000pg.en

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

99

Retrieving data 36, 38
stored 18
streaming mode 30
Retrieving times
rapid block mode 43, 44

S

Sampling rate
maximum 8
Scaling 6
Serial numbers 25
Signal generator 9
arbitrary waveforms 70
built-in waveforms 73
software trigger 83
Software licence conditions 2
Status codes 89
Stopping sampling 84
Streaming mode 7, 17
callback 85
getting number of samples 48
retrieving data 30
running 54
using 17
Synchronising units 20
System memory 4
System requirements 4

T

Technical support 3
Threshold voltage 7
Time buffers
setting for ETS 63, 64
Timebase 19
calculating 31, 32
Trademarks 2
Trigger 7
channel properties 79
conditions 76, 77
delay 81
directions 78
pulse-width qualifier 67
pulse-width qualifier conditions 69
requesting status 46
settingup 75
time offset 33, 34

U

USB 4,6
changing ports 5

hub 20

\

Vertical resolution 19
Visual Basic programming 86
Voltage ranges 6

selecting 56

W

Waveform limiter 82

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

ps6000pg.en

1CO

Technology

PicoScope 6000 Series Programmer's Guide 101

Copyright © 2009-2012 Pico Technology Ltd. All rights reserved. ps6000pg.en

Pico Technology

James House
Colmworth Business Park
ST. NEOTS
Cambridgeshire
PE19 8YP
United Kingdom
Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296
www.picotech.com

ps6000pg.en-7
13.3.12
Copyright © 2009-2012 Pico Technology Ltd. All rights reserved.

	Introduction
	Welcome
	Software licence conditions
	Trademarks
	Company details

	Product information
	System requirements
	Installation instructions

	Programming with the PicoScope 6000 Series
	Driver
	System requirements
	Voltage ranges
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Oversampling
	Timebases
	Combining several oscilloscopes
	API functions
	ps6000BlockReady
	ps6000CloseUnit
	ps6000DataReady
	ps6000EnumerateUnits
	ps6000FlashLed
	ps6000GetAnalogueOffset
	ps6000GetMaxDownSampleRatio
	ps6000GetNoOfCaptures
	ps6000GetStreamingLatestValues
	ps6000GetTimebase
	ps6000GetTimebase2
	ps6000GetTriggerTimeOffset
	ps6000GetTriggerTimeOffset64
	ps6000GetUnitInfo
	ps6000GetValues
	Downsampling modes

	ps6000GetValuesAsync
	ps6000GetValuesBulk
	ps6000GetValuesBulkAsync
	ps6000GetValuesOverlapped
	ps6000GetValuesOverlappedBulk
	ps6000GetValuesTriggerTimeOffsetBulk
	ps6000GetValuesTriggerTimeOffsetBulk64
	ps6000IsReady
	ps6000IsTriggerOrPulseWidthQualifierEnabled
	ps6000MemorySegments
	ps6000NoOfStreamingValues
	ps6000OpenUnit
	ps6000OpenUnitAsync
	ps6000OpenUnitProgress
	ps6000RunBlock
	ps6000RunStreaming
	ps6000SetChannel
	ps6000SetDataBuffer
	ps6000SetDataBufferBulk
	ps6000SetDataBuffers
	ps6000SetDataBuffersBulk
	ps6000SetEts
	ps6000SetEtsTimeBuffer
	ps6000SetEtsTimeBuffers
	ps6000SetExternalClock
	ps6000SetNoOfCaptures
	ps6000SetPulseWidthQualifier
	PS6000_PWQ_CONDITIONS structure

	ps6000SetSigGenArbitrary
	AWG index modes

	ps6000SetSigGenBuiltIn
	ps6000SetSimpleTrigger
	ps6000SetTriggerChannelConditions
	PS6000_TRIGGER_CONDITIONS structure

	ps6000SetTriggerChannelDirections
	ps6000SetTriggerChannelProperties
	TRIGGER_CHANNEL_PROPERTIES structure

	ps6000SetTriggerDelay
	ps6000SetWaveformLimiter
	ps6000SigGenSoftwareControl
	ps6000Stop
	ps6000StreamingReady

	Programming examples
	C
	Visual Basic
	Excel
	LabView

	Driver status codes
	Enumerated types and constants
	Numeric data types

	Glossary

